Thermal energy storage is necessary for improving energy utilization efficiency. Using Ca(OH)2/CaO in fluidized bed reactors can realize rapid storage and release large-scale thermal energy, and hence, research on the reaction kinetics of Ca(OH)2/CaO under fluidization is important. However, the thermogravimetric analysis (TGA) technique cannot provide the constant temperature reaction conditions required for Ca(OH)2, and its mass transfer inhibition phenomenon is significant. Hence, a fast-reaction TGA technique was proposed that can provide reaction conditions closer to those of fluidization for Ca(OH)2/CaO, when compared with the conventional TGA technique. The fast-reaction TGA technique could provide a higher heating rate and better mass transfer conditions for heat storage material by rapidly moving the high-temperature reactor and introducing a high-speed purge gas. The influence of the reactor temperature, moving speed and airflow on the fast-reaction TGA performance was clarified by decoupling experiment. When tested with Ca(OH)2, the deviation in the material conversion obtained with the fast-reaction TGA technique from that obtained with the conventional TGA technique is only 0.81%, which demonstrates the accuracy of the fast-reaction TGA.
China Coal Science and Industry Group Co., Ltd
Coal Science Research Institute Co., Ltd
Coal Industry Clean Coal Engineering
Technology Research Center
XIE Qiang
YU Chang
SHI Yixiang
ZHAO Yongchun
DUAN Linbo
CAO Jingpei
ZENG Jie
Monthly
1006-6772
11-3676/TD