压力对热解煤焦结构及其燃烧反应性的影响

闫华青¹,张先炼²,许 凯¹,李寒剑¹,徐 俊¹,汪 一¹,江 龙¹,苏 胜¹,胡 松¹,向 军¹ (1.华中科技大学 能源与动力工程学院,湖北 武汉 430074;2.湖北西塞山发电有限公司,湖北 黄石 435000)

摘 要:加压富氧燃烧被认为是一种更加高效清洁的第2代富氧燃烧技术而备受关注。热解作为煤 燃烧的第1步,不同的热解条件(压力、气氛、升温速率等)将直接影响煤焦的物理和化学结构,导致 其燃烧反应性的差异,目前加压富氧燃烧条件下,煤焦反应性与结构性质之间的关联研究鲜见报道。 自主设计并建立了一套加压聚光光热快速升温试验平台,最大升温速率可达80℃/s,选用红沙泉 (HSQ)和五彩湾(WCW)2种准东煤,制备了不同压力(常压~1.5 MPa)及热解气氛(N₂、CO₂)下的煤 焦,采用比表面积分析仪、拉曼分析仪、热重分析仪等表征手段考察了压力及热解气氛对煤焦的结构 特性及其燃烧反应性的影响。结果表明,在惰性 N,气氛下,HSQ 和 WCW 煤在压力 1.5 MPa 时的煤焦 产率较常压下分别增加了 3.54%和 10.49%;在 CO, 气氛下, HSQ 煤在压力 1.5 MPa 时的煤焦产率较常 压下降低了16.40%,煤焦产率在2种气氛下随压力的改变呈相反趋势。N。气氛下,随着压力从常压 增至 0.4 MPa, HSQ/WCW 煤焦的比表面积增加,从 24.20/14.85 m²/g 增至 26.27/46.19 m²/g,但压力 继续增至 1.5 MPa 时, HSQ/WCW 煤焦的比表面积呈下降趋势, 从 26.27/46.19 m²/g 降至 21.21/ 39.46 m²/g;相同压力下,CO,气氛下制备的煤焦孔隙结构更发达,常压和1.5 MPa 压力时,CO,气氛下 制备的 HSQ 煤焦比表面积分别为 N,气氛制备煤焦的 6.46 和 9.03 倍,这也是 CO,气氛下制备的 HSQ 煤焦燃烧反应性优于 N2气氛煤焦的主要原因。随着压力增加,2 种气氛下,2 种煤焦拉曼光谱分峰拟 合计算得到的 I_(CR+VL+VR)/I_D值均逐渐下降,煤焦的化学结构趋于更加稳定,这也使得高压下制备煤焦 的燃烧反应性下降。但相同压力下, CO_2 气氛下制备的 HSQ 煤焦 $I_{(CB+VL+VB)}/I_D$ 值低于 N_2 气氛制备的 HSQ 煤焦,高压下由于 CO2与焦炭的气化反应增强,消耗更多的无定形碳,2 种气氛的 I(GB+VI+VB)/ID差 异更明显,但由于物理孔隙结构差异的主导作用,使 CO2气氛下制备的 HSQ 煤焦燃烧反应性更好。 可见,煤焦的燃烧反应性受其物理结构和化学结构的共同影响。

关键词:富氧燃烧;热解;压力;煤焦;CO,;比表面积;化学结构;燃烧反应性

中图分类号:TQ53;TK114 文献标志码:A 文章编号:1006-6772(2021)04-0068-09

Effect of pressure on structure and combustion reactivity of pyrolysis coal char

YAN Huaqing¹, ZHANG Xianlian², XU Kai¹, LI Hanjian¹, XU Jun¹, WANG Yi¹,

JIANG Long¹, SU Sheng¹, HU Song¹, XIANG Jun¹

(1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;

2. Hubei Xisaishan Power Generation Co., Ltd., Huangshi 435000, China)

Abstract: Pressurized oxy – fuel combustion has attracted much attention, which is considered to be a more efficient and cleaner second-generation oxy-fuel combustion technology. As the first step of coal combustion, different pyrolysis conditions (pressure, atmosphere, heating rate, etc.) directly affect the physical and chemical structure of char, which in turn leads to different combustion reactivity. At present, under the conditions of pressurized oxy-fuel combustion, there is few report on the correlation between the reactivity and structural properties of char. A pressurized concentrating photothermal apparatus whose maximum heating rate could reach 80 C/s was independently designed and established. Two kinds of Zhundong coals, Hongshaquan (HSQ) and Wucaiwan (WCW) were selected to pre-

基金项目:国家自然科学基金资助项目(51806074)

68

引用格式:闫华青,张先炼,许凯,等.压力对热解煤焦结构及其燃烧反应性的影响[J].洁净煤技术,2021,27(4):68-76.

YAN Huaqing, ZHANG Xianlian, XU Kai, et al. Effect of pressure on structure and combustion reactivity of pyrolysis coal char[J].Clean Coal Technology,2021,27(4):68-76.

收稿日期:2021-03-31;责任编辑:张晓宁 DOI:10.13226/j.issn.1006-6772.CE21033103

作者简介: 闫华青(1995—), 男, 河南安阳人, 硕士研究生, 研究方向为煤的加压富氧燃烧特性。E-mail: 1197586816@ qq.com。通讯作者:许凯, 助理研究员, 研究方向为煤气化反应机理。E-mail: xukai@hust.edu.cn

pare char under different pressures (atmospheric pressure -1.5 MPa) and pyrolysis atmospheres (N₂, CO₂). The specific surface area analyzer, Raman analyzer, thermogravimetric analyzer were used to systematically investigate the influence of pressure and pyrolysis atmosphere on the structural characteristics of char and its combustion reactivity. The results show that under inert N₂ atmosphere, the char yield of HSQ and WCW coal at 1.5 MPa increase by 3.54% and 10.49%, respectively, compared with atmospheric pressure. While under CO, atmosphere, compared with atmospheric pressure, the char yield of HSQ coal at 1.5 MPa decreases by 16.40%, and the char yield shows opposite trends with pressure changes under two kinds of atmospheres. Under N2 atmosphere, the specific surface area of HSQ/WCW char increases from 24.20/14.85 m²/g to 26.27/46.19 m²/g with the pressure increases from atmospheric pressure to 0.4 MPa. However, when the pressure continues to increase to 1.5 MPa, the specific surface area of HSQ/WCW char decreases from 26.27/46.19 m²/g to 21.21/ 39.46 m²/g. Under the same pressure, the pore structure of char prepared under CO₂ atmosphere is more developed. At atmospheric pressure and 1.5 MPa, the specific surface area of HSQ char prepared under CO₂ atmosphere is 6.46 and 9.03 times that of char prepared under N₂ atmosphere, respectively. This is also the main reason why the combustion reactivity of HSQ char prepared under CO₂ atmosphere is better than that prepared under N_2 atmosphere. With the increase of pressure, whether it is prepared under N_2 atmosphere or CO₂ atmosphere, the ratio of $I_{(GR+VL+VR)}/I_D$ calculated by the peak fitting calculation of the Raman spectra of two kinds of chars gradually decreases, and the chemical structure of the chars tends to be more stable, which also make the combustion reactivity of chars prepared under high pressure decreases. However, under the same pressure, the ratio of $I_{(GR+VL+VR)}/I_D$ of HSQ char prepared under CO₂ atmosphere is lower than that prepared under N2 atmosphere. Under high pressure, the gasification reaction of CO2 and char is enhanced, which consume more amorphous carbon, so the difference of $I_{(GR+VL+VR)}/I_D$ is more obvious under two kinds of atmospheres. However, due to the dominant effect of the difference in physical pore structure, HSQ char prepared under CO₂ atmosphere has better combustion reactivity. It could be concluded that the combustion reactivity of char is affected by physical structure and chemical structure.

Key words: oxy-fuel combustion; pyrolysis; pressure; char; CO2; specific surface area; chemical structure; combustion reactivity

0 引 言

富氧燃烧过程中,空气分离制氧过程与烟气压 缩过程均在加压下进行,而富氧燃烧过程在常压下 进行,压力的升一降一升造成能量损失^[1-3]。基于 此,学者提出了一种新型高效燃烧技术——增压 富氧燃烧^[4-5],即空气分离过程、富氧燃烧过程、烟 气压缩过程均在高压下进行。研究结果表明^[6-7], 增压富氧燃烧技术在节能降耗方面具有巨大的 潜力。

一般认为,煤燃烧的第1步是煤热解析出挥发 分,其进程将直接影响热解煤焦的物理和化学结构, 导致其燃烧反应性差异。Qing等^[8]在管式炉上试 验研究发现,煤在挥发分析出过程中,CO₂除了参与 气化反应导致焦炭质量损失增加外,还会使产生的 煤焦芳香化程度增加,认为添加 CO₂可促进焦炭中 芳香环的缩合,改变了其化学结构。Brix 等^[9]通过 携带流反应器试验研究,发现 N₂和 CO₂气氛下制备 的焦炭 BET 比表面积以及挥发分产物收率差异不 大,可认为空气燃烧转为富氧燃烧,反应压力和反应 气氛(CO₂取代 N₂)的改变会使煤颗粒的脱挥发分 过程改变^[10-12],使煤焦结构(如孔隙分布、比表面积 以及石墨化程度等)发生变化,进而影响煤焦的反 应性^[13-15]。Gouws 等^[12]研究了 O₂/CO₂气氛下 CO₂ 分压对煤焦的气化反应速率和孔结构的影响,发现 随着 CO,分压的增加,焦炭的微孔和中孔表面积明 显增加,同时焦炭的气化速率也明显增加。Zhang 等^[10]分析了快速加热条件下总压以及 CO₂分压对 于焦结构和反应性的影响,发现随着 CO,分压的增 加,焦炭的比表面积和孔体积均增加,同时焦炭石墨 化程度也增加,焦炭反应性变差,认为化学结构对煤 焦燃烧反应性的影响比物理结构的影响更重要。 Jiménez 等^[15]在加压固定床上评估了压力对煤热解 的影响,不同压力下煤焦的形态差异和拉曼结构变 化对煤焦的反应性基本无影响,认为焦炭的燃烧反 应是一个更加全局的过程,不受焦炭的微观结构影 响。目前关于煤颗粒的加压热解特性研究并没有一 致的结论,热解煤焦反应性因其物理化学结构(孔 隙结构、碳骨架结构等)的差异而呈现不同的演变 特征,不同压力和气氛条件(N,、CO,)下煤焦反应性 与结构特性之间的关联仍需进行更加系统深入地 探索。

本文选取红沙泉和五彩湾 2 种准东煤进行试验 研究,基于自行设计并建立的加压聚光光热快速升 温试验平台,制备了不同压力(0.1~1.5 MPa)及热 解气氛(N₂、CO₂)下的煤焦,采用比表面积分析仪、 拉曼分析仪、热重分析仪表征手段考察了压力和热 解气氛对煤焦结构及其反应性的影响,为进一步揭 示煤的加压富氧燃烧过程提供指导。

洁净煤技术

1 试 验

1.1 样品准备

所用煤种为中国新疆准东地区的五彩湾烟煤 (WCW煤)和红沙泉烟煤(HSQ煤)。2种煤样经粉 碎、筛分,选取粒径为74~150μm的煤粉用于压型 制备煤颗粒。具体成型过程如下:称量(0.110± 0.003)g煤粉样品,在液压机上使用圆柱形模具压型,控制压型压力为9 MPa,压成直径为(6.47±0.01)mm、高为(2.65±0.01)mm的圆柱形颗粒,在煤颗粒圆形截面上钻取直径为1mm小孔,孔深1.33mm,用于嵌入热电偶,实时监测反应过程中样品颗粒的内部温度,2种煤样的工业分析和元素分析见表1。

Fable 1	Proximate	analysis	and	ultimate	analy	sis of	f coal	sample	es
	I I O'AIIIIIIII	cerreer, y DID	terrer.	ununuv	eenneen y	515 01	L COM	Stanpi	~

表 1

煤样的工业分析和元素分析

.44 44.		工业分析/%									
保柱 —	$M_{\rm ad}$	$V_{\rm ad}$	$A_{\rm ad}$	$FC_{\rm ad}$	C _{ad}	H _{ad}	${\rm O}_{\rm ad}^{*}$	\mathbf{N}_{ad}	S_{ad}		
WCW	12.47	25.78	4.64	57.11	63.00	4.09	14.47	0.66	0.67		
HSQ	14.34	24.91	6.85	53.91	61.45	4.29	12.20	0.46	0.41		

注:*表示由差减法得到。

1.2 试验装置

煤颗粒加压热解试验在自行搭建的加压聚光光 热试验平台上进行,如图1所示,试验平台主要由供 气系统、光源系统、加压反应器系统、数据采集系统 4个子系统组成,具有升温速率快、压力可调范围 宽、燃烧过程可视化等优点。

图1 加压聚光光热试验装置系统

Fig.1 Diagram of pressurized concentrating photothermal apparatus

1)供气系统:试验用气气瓶出口安装一级减压 阀,控制出气压力,可调节的最大压力为6 MPa,精 度为0.1 MPa;所有管路采用耐压的金属软管和不 锈钢管连接,保证气路系统可承受6 MPa的压力。

2) 光源系统:采用灯杯光源聚光加热,2个灯杯 对称分布在反应器视窗两侧,光源透过两侧的石英 玻璃视窗提供反应热源,通过调整灯杯电压控制加 热速率,最大电压为 24 V,聚光光斑中心温度最高 达1400℃,升温速率最高达 80℃/s。

3)加压反应器系统:反应器主体采用不锈钢材 质,方形设计,尺寸为 60 mm×60 mm×90 mm,在反 应器四面对称布置 4 个 φ 25 mm 的透明视窗,视窗 为耐压石英玻璃材质,通过螺丝压紧固定于金属反

应器上。反应器上方引出 2 根直径为 1 mm 的热电 偶,用于测量煤颗粒表面温度和中心温度,并将煤颗 粒固定在光斑中心,热电偶测温量程为 0~1 400 ℃。 反应器出口布置干燥及焦油过滤单元,通过背压阀 控制反应器内的工作压力,反应器最大承压为 3.5 MPa。

4)数据采集系统:热电偶测温信号通过 NI 数据采集模块(NI cDAQ-9174)记录,每秒可记录 20 个温度值;燃烧实时图像透过反应器正前方玻璃视 窗由高速摄像机(PHOTRON FASTCAM UX-50,890× 890,50 HZ)拍摄记录,高速摄像机曝光时间为 1/800 s,拍摄颗粒燃烧图像 50 张/s;反应器出口气 体(NO_x、CO、CO₂等)通过烟气分析仪(MRU NOVA-PLUS)实时检测。

1.3 温度标定

采用高能量的光源直接加热颗粒,为了在后续 试验中实现对反应器内光斑中心温度的精准调控, 试验前需要对不同电压下光源照射的光斑中心温度 进行标定,具体操作方法为:压片制备直径(6.47± 0.01) mm、高(2.65±0.01) mm 的圆柱形石墨颗粒, 在其颗粒圆形截面上钻取直径为1 mm 的小孔,孔 深1.33 mm,将一根热电偶测温端置于钻取的小孔 内,另外一根热电偶测温端置于颗粒表面,将颗粒夹 持固定后悬挂于反应器内聚光光斑中心,调节吹扫 气(N₂)流量为 1.3 L/min,分别调节反应器内压力 为 0.1、0.4、1.0 和 1.5 MPa, 依次调节直流电源电压 值为12、14、16、18、20 V。加热前将金属薄片挡在 视窗与灯杯之间,阻断光源对煤颗粒的加热,待调整 灯杯电压到目标值后,迅速抽离挡板,高能量密度聚 光光斑辐射换热可实现颗粒快速升温。温度稳定 后,记录石墨颗粒表面温度。图2为不同压力下颗 粒表面温度与电压的关系,可见,不同压力下颗粒表面 温度与电压强度基本呈线性关系,线性拟合后,可得

图 2 不同压力下颗粒表面温度与电压的关系

Fig.2 Corresponding relationship between particle surface temperature and voltage under different pressures

到不同压力下的颗粒表面温度与电压的关联式(表 2),*R*²均大于 0.99,线性拟合度较好,光源加热系统 稳定性良好。

1.4 试验步骤

焦样的制备在聚光光热快速升温试验装置上进行,按照1.3节操作方法对煤颗粒进行固定后,悬挂于反应器内聚光光斑中心。调整反应器内气氛及压力到目标状态后,将金属薄片挡在视窗与灯杯之间,待调整灯杯电压到目标值后,迅速抽离挡板,实现颗粒快速升温。试验中气体流量控制在1.3 L/min,压力范围为0.1~1.5 MPa,温度为800 °C,反应时间为150 s,为考察富氧燃烧中 CO₂对热解过程的影响,分别使用 N₂和 CO₂作为反应气制备热解焦,试验工况见表 2,不同工况下制备的煤焦用符号标记,如WCW 煤在 0.1 MPa、N₂气氛制备的煤焦样品可记作WCW-0.1-N₂。

表 2 试验工况 Table 2 Experimental conditions

煤样	WCW	WCW	WCW	WCW	HSQ	HSQ	HSQ	HSQ	HSQ	HSQ	HSQ	HSQ
压力/MPa	0.1	0.4	1.0	1.5	0.1	0.4	1.0	1.5	0.1	0.4	1.0	1.5
气氛	N_2	CO_2	CO_2	CO_2	CO ₂							

1.5 煤焦物理化学结构表征

煤焦的物理孔隙结构表征采用 JW-BK100A 全 自动比表面积及孔径分析仪(精微高博公司),测试 原理为静态容量法。预处理条件为:180 ℃干燥 2 h,N₂为吸附气体,吸附温度为 77 K。

煤焦样品的化学碳骨架结构分析采用 Jobin Yvon Labram HR800 拉曼显微光谱仪,使用 50 倍透 镜的显微镜将激光发射束(波长为 532 nm)聚集在 样品上,并在反向散射方向上收集样品的拉曼信号。 分析过程中,控制到达焦炭颗粒表面的激光功率为 1.2 mW,以最大程度减少热辐射,扫描样品的波长 范围为 800~3 200 cm⁻¹,分辨率为1 cm⁻¹,采集时间 为 15 s。每个样品进行 10 次检测,取多次光谱分析 的平均值进行分析。

2 试验结果与讨论

2.1 煤焦产率

采用灰平衡法对试验所得煤焦产率进行计算, 不同压力及热解气氛下2种煤的煤焦产率如图3所 示。惰性 N₂气氛下, HSQ 和 WCW 煤在压力为 1.5 MPa时的煤焦产率较常压下分别增加了3.54% 和10.49%,随着热解压力增加,在惰性 N₂气氛下2 种煤的煤焦产率均增加。这主要是由于烟煤颗粒热 解过程中气相和液相更易形成胶质体(焦油前驱 物)^[16],而在加压条件下,煤中的胶质体较难蒸发, 更多的焦油前驱物停留在焦炭内部发生二次反应, 形成积碳^[13,17-19];另一方面,压力增大,气体扩散减 弱,挥发分析出受到抑制,这2个效应共同作用使煤 焦产率增加。CO₂气氛下,HSQ 煤样在压力为 1.5 MPa 时的煤焦产率较常压降低了 16.40%,随着 压力增加,煤焦产率呈相反趋势,压力越大,煤焦产 率越低,说明 CO₂气化作用在加压条件下更加明显, 随着压力增加,单位体积 CO₂分子数增多,CO₂在煤 颗粒活性表面上的吸附增强,并与表面的活性结构 反应生成 CO,CO 可从颗粒表面解吸,导致煤焦产率 降低。加压下 C-CO₂反应机理^[10]为

图 3 不同热解条件下 HSQ 和 WCW 的煤焦产率 Fig.3 Char yield of HSQ and WCW under different pyrolysis conditions

洁净煤技术

$CO+C(CO) \longrightarrow CO_2+2C_{fo}$

2.2 压力对煤焦孔隙结构的影响

煤焦样品的等温吸附线如图 4 所示。可以看

不同热解条件下煤焦样品的吸附/脱附等温线 图 4

Fig.4 Adsorption/desorption isotherms of char samples prepared under different pyrolysis conditions

HSO 煤焦在不同热解条件下的孔径分布 图 5

Fig.5 Pore size distribution of HSQ char prepared under different pyrolysis conditions

由图4(a)可知,随着压力增加,N。气氛下制备 的 HSQ 煤焦的吸附/脱附等温线几乎重叠,吸附量 先略升后下降,一方面热解压力增加使挥发物中轻 质气体含量增加,在气体释放过程中形成更多孔隙; 另一方面热解压力增加抑制了挥发分的析出[13],阻 碍了孔隙结构的发展.2 者综合作用使压力从 0.1 MPa 增至 0.4 MPa 时,煤焦的比表面积从 24.20 m²/g增至 26.27 m²/g;压力继续增至 1.5 MPa 时,煤焦的比表面积呈下降趋势,从 26.27 m²/g 降 至 21.21 $m^2/g(图 6(a))$,吸附量先略升后下降。由 图 4(b)可知,其在常压下的吸附量最小,压力大于 0.4 MPa 后,等温线开始回落,说明煤焦在 0.4 MPa 下对应的孔隙结构最发达,此时对应的比表面积也 从 14.85 m²/g 增至 46.19 m²/g;热解压力继续增加, 煤焦吸附量开始下降,比表面积从 46.19 m²/g 降至 39.46 m²/g(图6(a))。刘志豪^[20]也得到类似的试 验结果,压力从 0.1 MPa 增至 0.5 MPa 时,热解焦的 比表面积增加,压力继续增加时,热解焦的比表面积 下降,认为主要是由于压力影响了气泡的产生和融 合,导致煤焦的孔结构发生变化。N,气氛下,热解 压力对于 WCW 煤焦孔隙结构的影响更明显。

出,不同条件下制备的煤焦样品的吸附/脱附等温线

呈不同形状。N₂气氛下,2种煤焦样品的等温吸附

线形状相似,均为Ⅱ型"S"形等温线(图4(a)、

(b));CO,气氛下制备的煤焦样品,其等温吸附线形

状发生明显改变,为I型等温线(图4(c)),说明在

CO,气氛下制备的煤焦孔结构可得到更好的发展,

由图 4(c) 可知, 对于 CO2气氛下制备的煤焦, 随着压力增加,其吸附量呈先升后降趋势,但相比常 压条件,压力的增加使吸附量明显增加,这与 Gouws 等^[12]和 Zhang 等^[10]试验结果一致。由图 6 可知, CO2气氛下制备的 HSQ 煤焦比表面积在压力 0.1、

1.5 MPa下分别是 N₂气氛制备煤焦的 6.46 和 9.03 倍,这主要是由于 CO₂气化作用在加压条件下更明 显,随着压力增加,CO₂在煤颗粒活性表面上的吸附 增强,并与表面的活性结构反应生成 CO,CO 从颗粒 表面解吸时会形成更多的微孔结构^[12],使煤焦的比 表面积增大。

2.3 压力对煤焦碳骨架结构的影响

本文对拉曼光谱的分峰拟合采用 Li 等^[21]提出的十峰法,将 800~1 800 cm⁻¹的一阶拉曼光谱拟合

为 10 个高斯峰。表 3 为各峰位置及代表含义。在 1 300 cm⁻¹处的 D 带代表大于 6 个芳香环的结构,在 G 带和 D 带之间分配了 3 个谱带 G_R、V_L、V_R,主要 代表无定形碳结构中的芳香环系统(具有 3~5 个苯 环系统)。 $I_{(GR+VL+VR)}/I_D$ 为 3 个谱带的面积与 D 谱 带的面积比,表征焦炭结构中小芳香环与大芳香环 的相对含量^[14,20]。图 7 为 WCW 煤在 1 MPa、N₂气 氛下制备的煤焦拉曼光谱拟合图,可以看出,采用十 峰法的拉曼光谱拟合效果很好。

表 3 "十峰法"拉曼各拟合峰位置及其代表的结构信息^[21]

Table.3 "Ten-peak method" Raman fitting peak position and their representative structure information^[21]

谱带	峰位置/cm ⁻¹	代表的结构信息	键型
G _L	1 700	羰基 C == 0	sp^2
G	1 590	芳香环扇形振动,烯烃 C == C,石墨 E ² _{2g}	sp^2
G_R	1 540	无定形碳结构,3~5个环的芳香环结构	sp^2
\mathbf{V}_{L}	1 465	无定形碳结构,芳香环的半圆形振动,亚甲基或甲基	sp^2 , sp^3
V_{R}	1 380	无定形碳结构,甲基,芳香环半圆形振动	sp^2 , sp^3
D	1 300	大于6环的芳香环结构,高度规则化碳基物质的 D 带,芳香环之间的 C—C 结构	sp^2
\mathbf{S}_{L}	1 230	对位芳环结构,芳基-烷基醚	sp^2 , sp^3
s	1 185	芳香碳-烷基碳结构,芳香(脂肪族)醚,氢化芳香族环	sp^2 , sp^3
$\mathbf{S}_{\mathbf{R}}$	1 060	芳香环 C—H 结构,苯环	sp^2
R	960~800	链烷烃或环烷烃中的 C—C 结构,芳香环 C—H 结构	sp^2 , sp^3

Fig.7 Diagram of Raman fitting peak of WCW char prepared under 1 MPa, N₂ atmosphere

图 8 为不同工况下制得煤焦的 $I_{(GR+VL+VR)}/I_{D}$ 值,可以看出,2 种煤、2 种气氛下 $I_{(GR+VL+VR)}/I_{D}$ 值均 随压力的增加而减小,煤焦的芳香化程度增加,这与 上文煤焦产率和煤焦孔隙结构分析结果一致。随着 压力增大,挥发分释放受到抑制,使一些小于6环的 小分子苯环结构重新聚合,转化为大于6个环的芳 香结构, $I_{(GR+VL+VR)}/I_{D}$ 值随之下降,煤焦的石墨化程 度增加^[22-24]。HSQ 煤在 CO₂气氛下制备的煤焦 $I_{(GR+VL+VR)}/I_{D}$ 值略低,说明 CO₂气氛下制备的煤焦 更具芳香性,这与 Qing 等^[14]的研究结果一致,主要 是由于在 CO₂下,会发生 CO₂气化的副反应,消耗芳 香化程度较小的小环结构^[23],导致煤焦的芳香化更 高。这种差异在高压下更明显,是由于较高压力下, CO₂从煤焦外部向内部的扩散增强,为 CO₂与煤焦 中无定形碳充分接触与反应提供了条件,使无定形 碳的消耗增多,导致煤焦的石墨化程度增加^[20],这 与 2.1 节结果一致。

2.4 煤焦燃烧反应性

煤焦的富氧燃烧试验采用 STA8000 热重分析 仪(美国珀金埃尔默公司)。调节炉内气氛为 30% $O_2/70\%$ CO₂,气体流量为 100 mL/min。称量(10± 0.1) mg 煤焦样品放在洁净的氧化铝坩埚中,炉体 初始温度为 30 °C,终温为 1 000 °C,升温速率为 20 K/min。不同工况下制备的煤焦样品的 TG 曲线如 图 9 所示,可以看出随着热解制焦压力增加,TG 曲 线具有明显向高温区移动的趋势,燃烧反应需要在 更高温度下才能进行。

为揭示不同热解压力及气氛下制备煤焦的富氧 燃烧进程,选取着火温度(*T_i*)和燃尽温度(*T_b*)进行 进一步研究。着火温度由 TG-DTG 法确定^[25-27],具 体为:在 TG 曲线上最大质量变化速率点(DTG 曲线 上确定)处作切线,与 TG 曲线上脱水后的平滑基线 相交点所对应的温度即为着火温度(图 10);煤焦失 重达到总失重量的 98%时对应的温度为燃尽温度。

图 10 着火温度和燃尽温度的确定

图 11 为不同条件制备煤焦的富氧燃烧 T_i 以及 T_b 。可以看出, HSQ-1.5-N₂的 T_i 和 T_b 分别比 HSQ-

0.1-N₂的高 19 ℃和 31 ℃, HSQ-1.5-CO₂的 T_i 和 T_b 分别比 HSQ-0.1-CO₂的高 17 ℃和 30 ℃, 可见, 2 种 气氛下制备的煤焦, 随着热解压力增加, T_i 和 T_b 均升 高, 且在相同压力下, CO₂气氛下制备煤焦的 T_i 和 T_b 明显低于 N₂气氛制备的煤焦。随着热解压力增加, 煤焦石墨化程度加深, 化学结构更稳定, 同时压力的 增加不利于煤焦孔隙结构的发展(图 5), 这些因素 共同作用使 T_i 、 T_b 升高。CO₂气氛下, CO₂参与气化 反应会使煤焦的孔隙更发达, 比表面积更大, 增强了 煤焦燃烧的反应性, 降低了煤焦的着火温度和燃尽 温度。

- 图 11 不同条件下制备的 HSQ 煤焦的着火温度和燃尽温度
 - Fig.11 Ignition temperature and burnout temperature of HSQ char under different conditions

选取综合燃烧特性指数 S 评判煤焦的燃烧特性^[26-27],其定义为

$$S = \frac{\left(\frac{\mathrm{d}w}{\mathrm{d}t}\right)_{\mathrm{max}}\left(\frac{\mathrm{d}w}{\mathrm{d}t}\right)_{\mathrm{mean}}}{T_{\mathrm{i}}^{2}T_{\mathrm{b}}},\tag{6}$$

其中, $(dw/dt)_{max}$ 和 $(dw/dt)_{mean}$ 分别为最大燃烧速率和平均燃烧速率, %/min。S 值越大, 燃烧反应性能越好。

不同热解压力及气氛制备煤焦的 S 值如图 12 所示。2种气氛下,随着压力增加,S均降低,燃烧 性能减弱,说明高压下制备的煤焦燃烧反应性差,这 是由于高压下煤焦的石墨化程度更高,化学结构更 加稳定,这也与刘志豪^[20] 和 Zhang 等^[10] 的研究结 果一致,认为不同热解压力下煤焦的燃烧反应性差 异主要由煤焦化学结构的差异引起。CO₂和 N₂气 氛、各压力下,CO,气氛下制备的煤焦S值均大于N, 气氛制备的煤焦,说明 CO,气氛制备的煤焦反应性 优于 N, 气氛制备的煤焦, 这与前文 CO, 气氛下制备 的煤焦石墨化程度更高相矛盾,主要是由于 CO,气 氛下制备的煤焦孔隙结构更发达,且2种气氛下制 备煤焦的孔隙结构差异性显著。从图6可以看出, 常压和 1.5 MPa 时, CO2气氛下制备的 HSQ 煤焦比 表面积分别约为 N,气氛制备煤焦的 6.46 倍和 9.03 倍,而对比不同气氛下制备煤焦的化学结构(图8)

可以发现,其差异较小。因此,不同气氛下制备的煤 焦,由于煤焦物理结构起主导作用,使 CO₂气氛下制 备的煤焦反应性更高。不同热解压力下制备的煤焦 燃烧反应性差异大,这是煤焦物理结构与化学结构 共同作用的结果。

图 12 不同条件下制备的煤焦 S 值

3 结 论

1)随着压力增加,在惰性 N₂气氛下制备的 2 种 煤焦产率均增加;而 CO₂气氛下,煤焦产率呈相反的 趋势,压力越大,煤焦产率越低。

2) N₂气氛下,2 种煤样制备的煤焦等温吸附线 形状相似,均为Ⅱ型"S"形等温线;但 CO₂气氛制备 的煤焦,其等温吸附线形状变为 I 型等温线。随着 压力增加,不同气氛下制备煤焦的比表面积均先增 后降,CO₂气氛下制备的煤焦比表面积明显大于 N₂ 气氛下制备的煤焦。

3)随着压力增加,2种气氛下,2种煤焦拉曼光 谱分峰拟合计算得到的 *I*_(GR+VL+VR)/*I*_D值均逐渐下 降,煤焦的化学结构趋于更稳定,这也使高压下制备 的煤焦燃烧反应性下降;但相同压力下,CO₂气氛下 制备的 HSQ 煤焦 *I*_(GR+VL+VR)/*I*_D值低于 N₂气氛制备 的 HSQ 煤焦,高压下由于 CO₂与焦炭的气化反应增 强,消耗更多的无定形碳,2种气氛 *I*_(GR+VL+VR)/*I*_D差 异更明显,但由于物理孔隙结构差异的主导作用,使 CO₂气氛下制备的 HSQ 煤焦燃烧反应性更好。

参考文献(References):

- ZEBIAN H, GAZZINO M, MITSOS A. Multi-variable optimization of pressurized oxy-coal combustion[J]. Energy, 2012, 38(1):37-57.
- [2] HONG J, FIELD R, GAZZINO M, et al. Operating pressure dependence of the pressurized oxy-fuel combustion power cycle[J]. Energy, 2010, 35(12):5391-5399.
- [3] HONG J, CHAUDHRY G, BRISSON J G, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor [J]. Energy, 2009, 34(9):1332-1340.
- [4] GOPAN A, KUMFER B M, AXELBAUM R L. Effect of operating

pressure and fuel moisture on net plant efficiency of a staged, pressurized oxy-combustion power plant [J]. International Journal of Greenhouse Gas Control, 2015, 39:390-396.

- [5] ZEBIAN H, MITSOS A. Pressurized OCC (oxy-coal combustion) process ideally flexible to the thermal load[J]. Energy, 2014, 73: 416-429.
- [6] ZEBIAN H, MITSOS A. Pressurized oxy-coal combustion: Ideally flexible to uncertainties [J]. Energy, 2013, 57:513-526.
- [7] GOPAN A, KUMFER B M, PHILLIPS J, et al. Process design and performance analysis of a staged, pressurized oxy - combustion (SPOC) power plant for carbon capture [J]. Applied Energy, 2014,125:179-188.
- [8] QING M, SU S, CHI H, et al. Relationships between structural features and reactivities of coal-chars prepared in CO₂ and H₂O atmospheres[J]. Fuel, 2019, 258:116087.
- [9] BRIX J, JENSEN P A, JENSEN A D. Coal devolatilization and char conversion under suspension fired conditions in O_2/N_2 and O_2/CO_2 atmospheres[J]. Fuel, 2010, 89(11):3373–3380.
- [10] ZHANG W, SUN S, ZHAO Y, et al. Effects of total pressure and CO₂ partial pressure on the physicochemical properties and reactivity of pressurized coal char produced at rapid heating rate[J]. Energy, 2020, 208:118297.
- [11] MALIUTINA K, TAHMASEBI A, YU J. Effects of pressure on morphology and structure of bio-char from pressurized entrained-flow pyrolysis of microalgae[J]. Data in Brief, 2018, 18:422-431.
- [12] GOUWS S M, NEOMAGUS H W J P, ROBERTS D G, et al. The effect of carbon dioxide partial pressure on the gasification rate and pore development of Highveld coal chars at elevated pressures [J]. Fuel Processing Technology, 2018, 179:1–9.
- [13] BIKANE K, YU J, LONG X, et al. Linking char reactivity to structural and morphological evolution during high pressure pyrolysis of Morupule coal [J]. Chemical Engineering Science: X, 2020,8:100072.
- [14] QING M, SU S, CHI H, et al. Relationships between structural features and reactivities of coal-chars prepared in CO₂ and H₂O atmospheres[J]. Fuel, 2019, 258:116087.
- [15] JIMÉNEZ F, MONDRAGÓN F, LÓPEZ D. Structural changes in coal chars after pressurized pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2012, 95:164-170.
- [16] 郝添翼. 加压条件下煤颗粒快速脱挥发分成焦特性研究[D]. 北京:清华大学,2015.
 HAO Tianyi. Study on coal char characteristics from rapid devolatilization under pressurized condition[D]. Beijing:Tsinghua University,2015.
- [17] 杨海平,陈汉平,鞠付栋,等. 典型煤种加压热解与气化实验研究[J]. 中国电机工程学报,2007,27(26):18-22.
 YANG Haiping, CHEN Hanping, JU Fudong, et al. Study on Pressurized pyrolysis and gasification of Chinese typical coal samples
 [J]. Proceedings of the CSEE,2007,27(26):18-22.
- [18] 许凯,胡松,苏胜,等.不同热解压力对煤焦结构的影响[J]. 工程热物理学报,2013,34(2):372-375.
 XU Kai, HU Song, SU Sheng, et al. The effect of pyrolysis pressure on char physicochemical structure[J]. Journal of Engi-

neering Thermophysics, 2013, 34(2): 372-375.

[19] 许凯,胡松,向军,等. 胜利褐煤的加压热解特性分析[J]. 中国电机工程学报,2011,31(29):15-20.
 XU Kai,HU Song,XIANG Jun, et al. Analysis on the behavior of pressurized pyrolysis of Shengli lignite [J]. Proceedings of the

CSEE,2011,31(29):15-20. [20] 刘志豪. 煤粉加压热转化中煤焦理化结构的研[D]. 哈尔滨:

哈尔滨工业大学,2019. LIU Zhihao. Study on physicochemical structure of char in pres-

surized thermal conversion of pulverized coal[D]. Harbin; Harbin Institute of Technology, 2019.

- [21] LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a victorian brown coal[J]. Fuel, 2006, 85(12/13):1700-1707.
- [22] XU J, TANG H, SU S, et al. A study of the relationships between coal structures and combustion characteristics: The insights from micro - Raman spectroscopy based on 32 kinds of Chinese coals[J]. Applied Energy, 2018, 212:46-56.
- [23] 林丹. 脱灰准东煤加压快速热解煤焦结构和反应性的实验研 究[D]. 哈尔滨:哈尔滨工业大学,2020.

LIN Dan. Experimental study on the structure and reactivity of demineralized Zhundong coal char rapidly pyrolyzed at elevated pressure [D]. Harbin Institute of Technology, 2020.

- [24] 梁凤莉. 热解压力和升温速率对煤焦和生物质焦结构及氧化反应性的影响[D]. 太原:太原理工大学,2017.
 LIANG Fengli. Effects of pyrolysis pressure and heating rate on structures and oxidation reactivities of coal char and biomass char [D]. Taiyuan: Taiyuan University of Technology, 2017.
- [25] 朱生华. CO₂对煤焦结构和气化反应性的影响[D]. 太原:太原理工大学,2015.
 ZHU Shenghua. Effects of CO₂ on structure and gasification reactivity of char[D]. Taiyuan: Taiyuan University of Technology, 2015.
- [26] YING Z, ZHENG X, CUI G. Pressurized oxy-fuel combustion performance of pulverized coal for CO₂ capture [J]. Applied Thermal Engineering, 2016: S952372756.
- [27] WANG C, LEI M, YAN W, et al. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions
 [J]. Energy & Fuels, 2011, 25(10):4333-4344.