2024年 7月

Clean Coal Technology

煤制甲醇合成气中有机氯化物生成反应的热力学分析

刘 浪1,武本成1,朱建华1,刘常进2,崔廷政2,杨秀玲2

(1.中国石油大学(北京)化学工程与环境学院,北京 102249;2.新疆广汇新能源有限公司,新疆维吾尔自治区哈密 839303)

摘 要:为分析煤制甲醇合成气中有机氯化物的来源及生成机理,利用原子系数矩阵法确定了该生成 反应体系的一组独立反应,根据 Rozicka-Domalski 基团贡献法、Benson 基团贡献法及手册查询计算出 各组分的标准生成热、标准熵及恒压比热容后,利用热力学方法计算了不同条件下该反应体系中各独 立反应的吉布斯自由能变,据此判断在指定条件下各独立反应发生的可能性。结果表明,常压、温度 低于 550 K 时氯乙烷、氯丙烷及氯丁烷可自发生成,增大压力有助于增加该类有机氯化物的自发生成 的可能性,分析结果可为煤制甲醇合成气中有机氯化物的生成及后续脱除技术开发提供指导。

关键词:合成气;原子系数矩阵;热力学分析;有机氯化物;煤制甲醇

中图分类号:TQ116 文献标志码:A 文章编号:1006-6772(2024)S1-0104-07

Thermodynamic analysis of organic chloride generation reactions in coal-to-methanol syngas

LIU Lang¹, WU Bencheng¹, ZHU Jianhua¹, LIU Changjin², CUI Tingzheng², YANG Xiuling²

(1. College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China;

2. Xinjiang Guanghui New Energy Co., Ltd., Hami 839303, China)

Abstract: In order to analyze the source and formation mechanism of organic chlorides in coal-to-methanol syngas, a set of independent reactions of the formation reaction system was determined by atomic coefficient matrix method. After calculating the standard heat of generation, standard entropy and constant pressure specific heat capacity of each component according to the Benson group contribution method and manual query, the Gibbs free energy change of each independent reaction in the reacting system under different condition was calculated by thermodynamic methods, and the possibility of each independent reaction under the specified conditions was judged. It can be seen from the calculation results that chloroethane, chloropropane and chlorobutane can occur spontaneously when the normal pressure and temperature are lower than 550 K, and increasing the pressure helps to increase the possibility of spontaneous formation of such organochlorides. The analysis results can insight to the generation of organic chlorides in coal to methanol syngas and the subsequent development of the technology for the removal of organochloride.

Key words: syngas; atomic coefficient matrix; thermodynamic analysis; organic chloride; coal-to-methanol

0 引 言

作为现代化工产业的基础性原料,合成气是煤 化工产业中不可缺少的中间产物,可制得合成氨、甲 醇、乙二醇及烯烃等重要化工产品。由于我国能源 结构呈现贫油、少气、多煤的特点,2021年中国煤炭 消费约占能源消费总量的56%^[1],因此国内常用煤 通过气化制合成气。若原料煤属于高氯煤,在煤气 化过程中得到的煤气净化难度大,无法有效脱除其 中的有机氯化物,得到的合成气中仍含有一定量有 机氯化物。宁坚等^[2]通过研究高氯煤中氯含量及 空气气氛下氯的释放行为,发现原煤低于560℃时 主要以有机形式的氯释放。有机氯化物将随工艺物 料迁移至下游装置,导致下游设备出现严重的氯腐 蚀^[3]、管道堵塞、合成气含灰量增大^[4]及催化剂中 毒等现象^[5],严重影响了煤化工企业的长周期生

作者简介:刘 浪(1999—),女,安徽合肥人,硕士研究生。E-mail:bcptbtptp3333@163.com

收稿日期:2023-10-16;责任编辑:白娅娜 DOI:10.13226/j.issn.1006-6772.23101602

通讯作者:朱建华(1963—),男,河南西平人,教授,博士。E-mail:secondzhu@sina.com

引用格式:刘浪,武本成,朱建华,等.煤制甲醇合成气中有机氯化物生成反应的热力学分析[J].洁净煤技术,2024,30(S1):104-110.

LIU Lang, WU Bencheng, ZHU Jianhua, et al. Thermodynamic analysis of organic chloride generation reactions in coal-to-methanol syngas [J]. Clean Coal Technology, 2024, 30(S1):104-110.

产,并带来潜在安全隐患。此外,迁移到;	产物中的有	1 合成气中独立反应的确定
机氯化物会降低产品质重,会对坏境质重	重 道 成 浴 仕	人式气中可能方力的 12 种低沸片方机气化物
威胁,即有仇氯化初刈合成〔的伊化、合〕 县切收合带亚不自影响 田业 雲亜耳	吸 <u>及</u>)	
里均付云市木小区影响。四此,而安月2 险性制田醇合成与由有机氢化物的技术	山王会成	$\mathcal{T}_{\mathcal{T}}}}}}}}}}$
与中国会量较低日主要为有机氯化物的投水。	。山」 日成 三合老虎 可	CHCI正堂津占均任于100℃ 在煤制合成与过程
以采用吸附法脱除煤制甲醇合成气中	1的有机氯	中均呈气态。
化物。		煤制合成气过程中反应涉及的组分有 C. O.
对合成气进行吸附脱氯处理前,首先	先需对煤制	$CO_{2}CO_{2}$, $H_{2}O_{3}$, $H_{2}O_{4}$, $H_{2}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4}O_{4$
甲醇合成气中的有机氯化物进行形态鉴	定及定量分	$C_{2}H_{4}$, $C_{4}H_{6}$ 和 $C_{4}H_{8}$, 共计 14 种。在反应体系中可能
析,而借助热力学分析方法可对在不同反	、应温度、压	发生反应方程式未知的情况下,可利用原子系数矩
力条件下煤制合成气过程中生成有机象	氰化物的机	阵法确定该复杂反应体系的独立反应数及其中一组
理 ^[6-7] 进行探究。		独立反应[8-9]。该复杂反应体系的原子系数矩阵为
$C_2H_4 \hspace{0.1in} H_2 \hspace{0.1in} O_2 \hspace{0.1in} HC1 \hspace{0.1in} CO \hspace{0.1in} CO_2 \hspace{0.1in} H_2O \hspace{0.1in} C \hspace{0.1in} CH_4 \hspace{0.1in} C_2H_6 \hspace{0.1in} C_3H_8 \hspace{0.1in} C_4H_7 \hspace{0.1in} H_8 \hspace{0.1in} C_4H_8 $	H_{10} C_3H_6 C_4H_8 CH_6	CI CH ₂ Cl ₂ CHCl ₃ CCl ₄ C ₂ H ₃ Cl C ₂ H ₃ Cl C ₂ H ₄ Cl ₂ C ₂ H ₂ Cl ₂ C ₂ H ₃ Cl ₃ C ₃ H ₅ Cl C ₃ H ₃ Cl C ₄ H ₉ Cl
C 2 0 0 0 1 1 0 1 1 2 3 4 H 4 2 0 1 0 0 2 0 4 6 8 10	3 4 1) 6 8 3	1 1 1 2 2 2 2 2 3 3 4 2 1 0 5 3 4 2 3 7 5 9 ,
0 0 0 2 0 1 2 1 0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0
CI 0 0 0 1 0 0 0 0 0 0 0 0	0 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
对式(1)进行初等行变换 最终可止	り得到加式	(2) 所示.
C_2H_4 H_2 O_2 HCI CO CO ₂ H_2O C CH ₄ C_2H_6 C_3H_8 C_4H	H_{10} C ₃ H ₆ C ₄ H ₈ CH ₃ C	(2))))))); 1 CH; Cl; CHCl, CCl, C;H;Cl C;H;Cl C;H;Cl; C;H;Cl; C;H;Cl, C;H;Cl C;H;Cl C;H;Cl C;H;Cl
C 1 0 0 0 $\frac{1}{2}$ $\frac{1}{2}$ 0 $\frac{1}{2}$ $\frac{1}{2}$ 1 $\frac{3}{2}$ 2	$\frac{3}{2}$ 2 $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 1 1 1 1 1 $\frac{3}{2}$ $\frac{3}{2}$ 2
H 0 1 0 0 -1 -1 1 -1 1 1 1 1	0 0 0	-1 -2 -3 0 -1 -1 -2 -2 0 -1 0 0
$0 0 0 1 0 \frac{1}{2} 1 \frac{1}{2} 0 0 0 0 0$	0 0 0	0 0 0 0 0 0 0 0 0 0 0
C1 0 0 0 1 0 0 0 0 0 0 0 0	0 0 1	2 3 4 1 1 2 2 3 1 1 1
该复杂反应休系原子系数矩阵的和	↓ 为 4 而 组	(2)
成该复杂反应体系的组分数为26 故其》	他立反应数	$1/2C_2H_4+2HCI \Longrightarrow CH_2Cl_2+H_2$, R(12)
为 26-4=22. 洗择 C ₀ H ₄ , H ₂ , O ₂ 及 HC	为该复杂反	$1/2C_2H_4+3HCl \longrightarrow CHCl_3+2H_2$, R(13)
应体系的非关键组分,可确定该复杂反历	立体系的—	$1/2C$ II $+4IICI \longrightarrow CCI +2II$ D(14)
组独立反应,结果如下述方程式所述。		$1/2C_2H_4+4HCI \longrightarrow CCI_4+3H_2, R(14)$
	$\mathbf{D}(1)$	C_2H_4 +HCl \Longrightarrow C_2H_5Cl, R(15)
$1/2C_2H_4+1/2O_2$ \leftarrow $CO+H_2$,	$\mathbf{K}(1)$	$C_{2}H_{2}+HC \equiv C_{2}H_{2}C + H_{2}$ B(16)
$1/2C_2H_4+O_2 \longrightarrow CO_2+H_2$,	R(2)	
$H_2+1/2O_2 = H_2O_1$	R(3)	$C_2H_4+2HCI \Longrightarrow C_2H_4Cl_2+H_2$, R(17)
$1/2C$ II $\longrightarrow C + II$	$\mathbf{D}(\mathbf{A})$	$C_2H_4+2HCl \Longrightarrow C_2H_2Cl_2+2H_2$, R(18)
$1/2C_2\Pi_4$ $\leftarrow C+\Pi_2$,	$\mathbf{K}(4)$	$C H \pm 3HCI \longrightarrow C H CI \pm 2H$ $P(10)$
$1/2C_2H_4+H_2 \equiv CH_4$,	R(5)	$C_2 II_4 + 5 II CI - C_2 II_3 CI_3 + 2 II_2, II (19)$
$C_2H_4+H_2 = C_2H_6$,	R(6)	$3/2C_2H_4$ +HCl $\Longrightarrow C_3H_7Cl$, R(20)
	D(7)	$3/2C_{2}H_{4}$ +HCl \Longrightarrow $C_{3}H_{5}$ Cl+H ₂ , B(21)
$5/2C_2\Pi_4+\Pi_2$ $-C_3\Pi_8$,	K(7)	
$2C_2H_4+H_2 = C_4H_{10}$,	R(8)	$2C_2H_4$ +HCl \Longrightarrow C ₄ H ₉ Cl _o R(22)
$3/2C_2H_4 = C_3H_6$,	R(9)	2 独立反应的热力学分析
$2C_2H_4 = C_4H_8$,	R(10)	为雨好判断久独立反应能不自告进行 雪斗管
$1/2C_2H_4$ +HCl \longrightarrow CH ₃ Cl,	R(11)	不同反应温度及压力条件下上述各独立反应的吉布

2024 年增刊1

洁净煤技术

斯自由能变 $\Delta_{\mathbf{r}} G_{\mathbf{m}}^{\Theta[10]}$ 。

2.1 组分的热力学数据

在上述复杂反应体系涉及的组分中,C、H₂、 HCl、O₂、CO、CO₂和 H₂O 等常见物质的基础热力学 数据可从相关数据手册^[11-13]及 HSC Chemistry 软 件中查得,故未列出;而对难以从相关数据手册中 获得的有机氯化物的热力学数据可采用基团贡献 法计算,随温度增加,部分组分由液态气化为气 态,需分别考虑气液相状态时的热力学数据,因此 液相时采用式(3)的 Rozicka-Domalski 基团贡献 法估算;气相时采用式(4)~(7)的 Benson 基团贡 献法^[14]估算。

$$\frac{C_{\rm P,L}^{\odot}}{R} = \sum_{i} n_i A_i + \sum_{i} n_i B \frac{T}{100} + \sum_{i} n_i C_i \left(\frac{T}{100}\right)^2, \quad (3)$$

$$\Delta H_{1298}^{\ominus} = \sum_{i} \left(n_i \Delta H_{1298,i}^{\ominus} \right) , \qquad (4)$$

$$S_{298}^{\ominus} = \sum_{i} \left(n_i S_{298,i}^{\ominus} \right) - R \ln \sigma + R \ln \eta, \quad (5)$$

$$\sigma = \sigma_{\rm ext} \sigma_{\rm int}, \qquad (6)$$

$$C_{\mathbf{P},m}^{\ominus} = \sum \left(n_i C_{\mathbf{P},i}^{\ominus} \right) , \qquad (7)$$

式中, C_p 为比热容;R为通用气体常数;下角标i为 基团型;A、B、C为经验常数,随物质和温度范围而 变化;T为估算温度; n_i 为i基团的数目;H为生成 热;S为熵; σ 为分子的对称数; η 为可能的光学异构 体数(2^m); σ_{ext} 为整体分子的转动对称数; σ_{int} 为分子 内部的转动对称数;m为分子中不对称的碳原子数。

参与上述独立反应的部分组分 Rozicka – Domalski 法中各基团的比热容见表 1,各组分 Benson 法中各基团的热力学贡献见表 2。

表1 Rozicka-Domalski 法的基团贡献数据

甘田	$\mathcal{C}^{\ominus}_{\mathrm{P},\mathrm{L}(i)} / (\mathrm{J} \cdot (\mathrm{mol} \cdot \mathrm{K})^{-1})$					
	A_i	B_i	C_i			
C—(H) ₃ (C)	3.845 2	-0.339 97	0.194 89			
$C-(H)_{2}(C)_{2}$	2.797 2	-0.054 967	0.106 79			
C_{d} — (H) ₂	4.176 3	-0.473 92	0.099 928			
C_d —(H)(C)	4.074 9	-1.073 5	0.214 13			
$C-(Cl)(C)_{3}$	-8.543	-2.696 6	-0.425 64			
$C-(H)(C)(Cl)_2$	10.88	-0.353 91	0.084 875			
$C-(H)_2(C)(Cl)$	9.666 3	-1.860 1	0.413 6			
C_d —(H)Cl	-7.156 4	-0.844 42	-0.271 99			
C_d —(Cl) ₂	9.324 7	-1.247 8	0.442 41			

注:C_d为一个已经以双键与另一碳原子链接的碳原子。

表 2 Benson 法的基团贡献数据

* H	$\Delta H^{igodot}_{{ m I298},i}$ /	$S^{\ominus}_{298,i}$ /	$C_{\mathrm{P},i}^{\ominus} / (\mathrm{J} \cdot (\mathrm{mol} \cdot \mathrm{K})^{-1})$					
奉凶	$(kJ \cdot mol^{-1})$	$(\mathbf{J} \boldsymbol{\cdot} (\mathrm{mol} \boldsymbol{\cdot} \mathbf{K})^{-1})$	300 K	400 K	500 K	600 K	800 K	1 000 K
C—(C)(H) ₃	-42.20	127.32	25.92	32.82	39.36	45.18	54.51	61.84
$C-(C)_{2}(H)_{2}$	-20.72	39.44	23.03	29.10	34.54	39.15	46.35	51.67
C—(C) ₃ (H)	-7.95	-50.53	19.01	25.12	30.02	33.70	38.98	42.08
$C-(C_{d})(H)_{3}$	-42.20	127.32	25.92	32.82	39.36	45.18	54.51	61.84
C_d —(H) ₂	26.21	115.60	21.35	26.63	31.44	35.59	42.16	47.19
C_d —(C)(H)	35.96	33.37	17.42	21.06	24.33	27.21	32.03	35.38
$C-(Cl)(H)_2(C)$	-69.10	158.30	37.30	44.80	51.50	56.10	64.10	69.90
$C-(Cl)(H)(C)_{2}$	-62.00	73.70	38.90	41.40	44.00	46.90	58.20	61.10
$C-(Cl)(C)_{3}$	-53.60	-22.60	38.90	44.00	46.10	47.30	51.90	53.20
$C-(Cl)_{2}(H)(C)$	-79.10	183.00	50.70	58.60	64.50	69.10	74.90	78.30
$C-(Cl)_2(C)_2$	-92.10	93.80	51.10	62.30	66.78	69.00	71.01	71.26
$C-(Cl)_{3}(C)$	-86.70	211.00	68.20	75.40	80.00	82.90	86.20	87.90

刘 浪等:煤制甲醇合成气中有机氯化物生成反应的热力学分析

续表 $C_{P_i}^{\ominus}/(\mathbf{J} \cdot (\mathbf{mol} \cdot \mathbf{K})^{-1})$ $\Delta H^{\ominus}_{1298,i}$ / $S^{\ominus}_{298,i}$ / 基团 $(kJ \cdot mol^{-1})$ $(J \cdot (mol \cdot K)^{-1})$ 400 K 500 K 300 K 600 K 800 K $1 \ 000 \ K$ C_d —(Cl)(H) -5.00148.20 33.10 38.50 43.10 46.90 51.50 54.80 C_d —(C)(Cl) -8.8062.80 33.50 35.20 35.60 37.70 38.50 39.40 C_d – (Cl)₂ 47.70 55.70 -7.53176.30 52.30 58.20 61.10 62.80 顺式修正 4.19 -5.61-4.56-3.39 -2.55-1.63-1.09顺式(卤素)(卤素) 1.3 -0.75-0.04-0.13-0.710.00 -0.13顺式(卤素)(烷基) -3.3 -4.06-2.93 -2.22-1.97 -1.00-0.54

注:ΔH^O_{1298,i}、S^O_{298,i}分别为 i 型基团在 298 K 时的标准生成热、标准熵。

液相 *C*[☉]_{P,L} 与温度的关系为式(3),组分的热力 学数据见表 3。估算气相 *C*[☉]_{P,m} 时,利用各基团中 300~1 000 K 热容值进行多项式回归可得到 *C*[☉]_{P,m} 与 温度的关系(式(8)),各组分的热力学数据见表 4。 $C_{P,m}^{\ominus} = a + bT + cT^2 + dT^3$, (8) 式中 a b a d 知经险党教

2024年增刊1

表 3 部分液态组分的热力学数据

组分 -		$C^{\ominus}_{\mathrm{P},\mathrm{L}(i)} / (\mathrm{J} \cdot (\mathrm{mol} \cdot \mathrm{K})^{-}$	1)
	A_i	B_i	C_i
CH_2Cl_2	90.44	-0.081 1	0.000 2
CHCl ₃	116.51	-0.104 4	0.000 3
CCl_4	149.89	-0.219 8	0.000 5
C_2H_5Cl	13.511 5	-2.200 07	0.608 49
$C_2H_4Cl_2$	14.725 2	-0.693 88	0.279 765
$C_2H_2Cl_2$	13.501	-1.721 72	0.542 338
$C_2H_3Cl_3$	-4.697 8	-3.036 57	-0.230 75
C_3H_7Cl	16.308 7	-2.255 04	0.715 28
C_3H_5Cl	0.763 7	-2.257 89	0.137 03
C_4H_9Cl	19.105 9	-2.31	0.822 07

表 4 各气态组分的热力学数据

组分	$\Delta H^{igodot}_{{ m f298},i}$ /	$S^{igodot}_{298,i}$ /	$C^{\ominus}_{\mathrm{P},i} / (\mathrm{J} \cdot (\mathrm{mol} \cdot \mathrm{K})^{-1})$				
	$(kJ\cdot mol^{-1})$	$(\mathbf{J} \boldsymbol{\cdot} (\text{mol} \boldsymbol{\cdot} \mathbf{K})^{-1})$	a	<i>b</i> /10 ⁻³	c/10 ⁻⁶	$d/10^{-9}$	
C_2H_4	52.5	219.25	4.922	146.103	-67.29	10.135	
H_2	0	130.68	27.052	9.698	-14.546	8.006	
HCl	-92.3	186.9	30.596	-8.743	14.739	-4.948	
CH_4	-74.48	186.38	25.286	16.614	71.816	-41.964	
C_2H_6	-83.85	229.23	5.402	178.003	-69.352	8.718	
C_3H_8	-104.68	270.31	-4.219	306.046	-158.506	32.111	
C_4H_{10}	-126.8	309.91	-2.812	392.035	-201.602	39.347	
C_3H_6	20	266.73	3.668	234.563	-116.139	22.096	
C_4H_8	-0.5	307.86	2.284	328.66	-160.25	25.907	
CH ₃ Cl	-82	234.3	13.863	101.351	-38.882	2.574	
CH_2Cl_2	-95.4	270.44	13.258	161.697	-130.726	42.628	
CHCl ₃	-102.9	295.61	23.99	189.185	-183.946	66.514	
CCl_4	-95.8	310.02	40.197	207.099	-234.409	91.942	
C_2H_5Cl	-112.3	275.89	-0.552	260.457	-183.852	55.443	
C_2H_3Cl	28.5	264.08	5.948	201.779	-153.486	47.684	

2024年增刊1

洁净煤技术

第30卷

续表								
组分	$\Delta H^{igodot_{\mathrm{f298},i}}$ /	$S^{igodot}_{298,i}$ /		$C^{\ominus}_{\mathbb{P},i} / (\mathbf{J} \cdot (\mathrm{mol} \cdot \mathbf{K})^{-1})$				
	$(kJ \cdot mol^{-1})$	$(J \cdot (mol \cdot K)^{-1})$	a	<i>b</i> /10 ⁻³	c/10 ⁻⁶	$d/10^{-9}$		
$C_2H_4Cl_2$	-130.1	305.17	13.528	262.618	-191.437	55.416		
$C_2H_2Cl_2$	2.4	287.98	14.82	232.723	-213.531	76.13		
$C_2H_3Cl_3$	-142.3	320.14	29.881	279.633	-243.08	83.314		
C_3H_7Cl	-144.8	306.05	57.654	64.096	198.395	-135.237		
C_3H_5Cl	-21	296.5	28.313	203.267	-100.709	17.504		
C_4H_9Cl	-161.2	355.27	56.307	161.488	140.106	-121.33		

2.2 独立反应的 $\Delta_{r}G_{m}^{\ominus}$ 与温度的关系

按式(9)~(11)计算上述各独立反应在 298 K 标准状态下的摩尔反应焓变($\Delta_r H_m^{\Theta}$)、反应熵变 ($\Delta_r S_m^{\Theta}$)及恒压比热容变($\Delta_r C_{p,m}^{\Theta}$),再考虑部分物 质的相变($\Delta_e H_{m(l \to g)}^{\Theta}$)及($\Delta_e S_{m(l \to g)}^{\Theta}$)(式(12)~ (13))。在此基础上,按式(14)~(16)计算其在不 同温度条件下的 $\Delta_r H_m^{\Theta}$ 、 $\Delta_r S_m^{\Theta}$ 及 $\Delta_r G_m^{\Theta}$ 。

$$\Delta_{\mathbf{r}} H_{\mathbf{m}}^{\ominus} = \sum_{i=1}^{n} v_{i} \Delta_{\mathbf{f}} H_{\mathbf{m},i}^{\ominus}, \qquad (9)$$

$$\Delta_{\mathbf{r}} S_{\mathbf{m}}^{\ominus} = \sum_{i=1}^{n} v_i S_{\mathbf{m},i}^{\ominus}, \qquad (10)$$

$$\Delta_{\mathbf{r}} C^{\ominus}_{\mathbf{p},\mathbf{m}} = \sum_{i=1}^{n} v_i C^{\ominus}_{\mathbf{p},\mathbf{m},i}, \qquad (11)$$

$$\Delta_{c}H_{m(1\to g)}^{\ominus} = \Delta_{f}H_{m(g)}^{\ominus} - \Delta_{f}H_{m(1)}^{\ominus}, \qquad (12)$$

$$\Delta_{\mathbf{r}} H_{\mathbf{m}}^{\ominus}(T) = \Delta_{\mathbf{r}} H_{\mathbf{m}}^{\ominus}(298.15 \text{ K}) + \int_{298.15}^{T_{\mathbf{b}}} \Delta_{\mathbf{r}} C_{\mathbf{p},\mathbf{L}}^{\ominus} \mathrm{d}T + \int_{T_{\mathbf{b}}}^{T} \Delta_{\mathbf{r}} C_{\mathbf{p},\mathbf{m}}^{\ominus} \mathrm{d}T + \Delta_{\mathbf{c}} H_{\mathbf{m}(1 \to g)}^{\ominus} ,$$
(14)

$$\Delta_{\mathbf{r}} S_{\mathbf{m}}^{\ominus}(T) = \Delta_{\mathbf{r}} S_{\mathbf{m}}^{\ominus}(298.15 \text{ K}) + \int_{298.15}^{T_{b}} \frac{\Delta_{\mathbf{r}} C_{\mathbf{p},\mathbf{L}}^{\ominus}}{T} dT + \int_{T_{b}}^{T} \frac{\Delta_{\mathbf{r}} C_{\mathbf{p},\mathbf{m}}^{\ominus}}{T} dT + \Delta_{\mathbf{c}} S_{\mathbf{m}(1 \rightarrow g)}^{\ominus} ,$$

$$(15)$$

$$\Delta_{\rm r} G_{\rm m}^{\ominus} = \Delta_{\rm r} H_{\rm m}^{\ominus} - T \Delta_{\rm r} S_{\rm m}^{\ominus}, \qquad (16)$$

式中,T_b为物质的沸点。

反应温度对各独立反应 $\Delta_r H_m^{\ominus}$ 的影响分别如图 1 所示。

图 1 反应温度对各独立反应 $\Delta_r H^{\ominus}_m$ 的影响

由图 1(a)可知,涉及无机气体、烷烃及烯烃的 生成反应均为放热反应;由图 1(b)可知,煤制甲醇 合成过程中,生成一氯甲烷、二氯乙烷、氯乙烷、氯丙 烷及氯丁烷等有机氯化物的反应为放热反应;这些 独立反应的 Δ,H[@] 均随温度升高呈小幅增大,其他 反应均为吸热反应。从动力学角度看,在一定温度 范围内,降低温度可显著降低反应速率,延长反应达 到平衡的时间,进而影响反应的进行;但从热力学角 度看,降低温度有利于各放热反应的进行。但反应 温度较低时,煤无法完全燃烧将会导致一部分煤浪 108 费,且会生成污染物质,因此需根据实际工艺选择合适的反应温度。

反应温度对各独立反应 $\Delta_{r}G_{m}^{\Theta}$ 的影响分别如图 2 所示。

由图 2(a)可知,在常压、450~800 K 下,生成 CO、CO₂、烷烃及烯烃独立反应的 $\Delta_r G^{\Theta}_m$ 均小于 0,表 明生成这些组分的反应在指定反应条件下均可自发 进行,部分烃类物质,如甲烷直至温度升至 1 100 K 时才可以自发生成;但生成有机氯化物的反应并非 均可在常压、450~1 100 K 下自发进行,如图 2(b)所

图 2 反应温度对各独立反应 $\Delta_r G_m^{\Theta}$ 的影响

示,温度低于 550 K时,反应 R(15)的 $\Delta_r G^{\Theta}_m$ 小于 0, 即可自发生成氯乙烷;温度低于 850 K时,反应 R(20)和R(22)的 $\Delta_r G^{\Theta}_m$ 均小于 0,即可自发生成氯 丙烷和氯丁烷。由此可知,煤制甲醇合成气过程中, 在较低温度下更易生成有机氯化物;且所有独立反 应的 $\Delta_r G^{\Theta}_m$ 均随反应温度升高而增大,表明升高温 度会抑制煤制合成气中有机氯化物的生成。

2.3 独立反应的 Gibbs 自由能变 $\Delta_{r}G_{m}^{\ominus}$ 与压力的 关系

由第 2.2 节可知,只有生成有机氯化物的独立 反应 R(15)、R(20)及 R(22)可在指定反应条件下 自发进行,故仅考察反应温度及初始组成不变的情 况下,反应压力对上述可自发进行并生成有机氯化 物独立反应 $\Delta_r G^{\ominus}_m$ 的影响。由于体系中各组分均为 气态,使用真实气体状态方程进行计算。选用 RK 方程,考虑压力从 P_1 变化至 P_2 时各气体组分的摩尔 体积 V_1 和 V_2 ,利用式(17)~(18)分别求出该过程中 各气体组分的焓变 ΔH^{ϵ} 及熵变 ΔS^{ϵ} ^[15]。

$$\Delta H^{g}(p_{2}) - \Delta H^{g}(p_{1}) = p_{2}V_{2} - p_{1}V_{1} + \frac{3a}{2T^{0.5}b} \ln \frac{V_{2}(V_{1}+b)}{V_{1}(V_{2}+b)},$$
(17)

$$\Delta S^{g}(p_{2}) - \Delta S^{g}(p_{1}) = R \ln \frac{V_{2} - b}{V_{1} - b} + \frac{a}{2T^{1.5}b} \ln \frac{V_{2}(V_{1} + b)}{V_{1}(V_{2} + b)^{\circ}}$$
(18)

根据等温线在临界点处出现水平拐点的条件可 得到参数 a'和 b'计算式(式(19)、(20)),临界温度 T_e及临界压力 P_e可通过查阅文献或计算得到。

$$a' = 0.427 \ 48R^2 T_{\rm c}^{2.5} / p_{\rm c}, \qquad (19)$$

$$b' = 0.086 \ 64RT_{\rm c}/p_{\rm c} \,, \tag{20}$$

根据得到的各组分 a'、b'数值,代入式(21),求 解该方程可得到一定温度及压力条件下各组分的摩 尔体积 V,然后代入式(17)、(18)可求得各组分的 焓变 ΔH^{*} 及熵变 ΔS^{*} 。

$$\sqrt{3} - \frac{RT}{p}V^{2} + \frac{a - pT^{0.5}b^{2} - RT^{1.5}}{pT^{0.5}}V - \frac{ab}{pT^{0.5}} = 0,$$
(21)

2024年增刊1

$$\Delta_{\mathbf{r}} H_{\mathbf{m}}^{\ominus}(T) = \sum_{i=1}^{n} v_{i} \left[\Delta_{\mathbf{f}} H_{\mathbf{m},i}^{\ominus}(T) + \Delta H_{i}^{\mathbf{g}}(T) \right],$$
(22)

$$\Delta_{\mathbf{r}} S_{\mathbf{m}}^{\ominus}(T) = \sum_{i=1}^{n} v_{i} \left[\Delta S_{\mathbf{m},i}^{\ominus}(T) + \Delta S_{i}^{\mathbf{g}}(T) \right], \quad (23)$$

在指定反应温度条件下,反应压力由 0.1 MPa升至4.0 MPa时,上述各独立反应焓变 $\Delta_r H^{\odot}_m 及 嫡变 \Delta_r S^{\odot}_m$ 的计算式分别如式(22)及(23) 所示。已知在0.1 MPa、指定温度条件下各独立反 应的摩尔焓变 $\Delta_r H^{\odot}_m$ 与摩尔熵变 $\Delta_r S^{\odot}_m$,代入式 (22)、(23)分别求得在指定温度、压力由0.1 MPa 升至4.0 MPa条件下各独立反应的焓变 $\Delta_r H^{\odot}_m$ 及熵 变 $\Delta_r S^{\odot}_m$,进而根据式(16)求出上述各组分进行的 各独立反应的 $\Delta_r C^{\odot}_m$,结果分别如图 3~5 所示。

图 3 反应压力对氯乙烷生成反应 $\Delta_r G_m^{\Theta}$ 的影响

由图 3 可知,对于氯乙烷的生成反应,反应压力 3.0 MPa、反应温度 750 K时,反应的 $\Delta_r G_m^{\ominus}$ 恰好为0, 即该反应条件为生成氯乙烷反应的临界反应条件; 温度 750 K,反应压力高于 3.0 MPa 时,氯乙烷生成 反应的 $\Delta_r G_m^{\ominus}$ 小于0,可自发生成氯乙烷。由图 4 可 知,对于生成氯丙烷的反应,反应压力 2.5 MPa、反 应温度 1 100 K时,反应的 $\Delta_r G_m^{\ominus}$ 为0,即该反应条件 109 2024 年增刊1

洁净煤技术

图 5 反应压力对氯丁烷生成反应Δ_rG_m^Θ的影响

为生成氯丙烷反应的临界反应条件;温度1100 K, 反应压力高于2.5 MPa时,生成氯丙烷反应的 $\Delta_r G_m^{\ominus}$ 小于0,可自发生成氯丙烷。由图5可知,对于氯丁 烷的生成反应,反应压力2.0 MPa、反应温度1150 K 时,反应的 $\Delta_r G_m^{\ominus}$ 为0,即该反应条件为氯丁烷生成 反应的临界反应条件;温度1150 K,反应压力高于 2.0 MPa时,氯丁烷生成反应的 $\Delta_r G_m^{\ominus}$ 小于0,可自发 生成氯丁烷。由图3~5可知,各独立反应的 $\Delta_r G_m^{\ominus}$ 均随压力增大而减小,压力由0.1 MPa升至0.5 MPa 时, $\Delta_r G_m^{\ominus}$ 降幅最大;压力超过0.5 MPa后,继续增大 压力 $\Delta_r G_m^{\ominus}$ 降幅减少,表明相同反应温度下增大反 应压力可增大独立反应自发进行的可能性。

对于上述可自发进行的独立反应,随反应温度 降低及反应压力增大, Δ_rG[☉] 均减小,表明降低温 度、增大压力有利于独立反应自发进行。由此判断 煤制甲醇合成气过程中,可能生成的有机氯化物为 氯乙烷、氯丙烷和氯丁烷。

3 结 论

1)常压条件下,反应温度低于550K时,可自发

进行生成氯乙烷;反应温度低于 600 K 时,即可自发 生成氯丙烷和氯丁烷。

2)750 K下,反应压力高于 3.0 MPa 时,可自发 进行生成氯乙烷;1 100 K下,反应压力高于 2.5 MPa 时,可自发生成氯丙烷;1 150 K下,反应压力高于 2.0 MPa 时,可自发生成氯丁烷。

3)煤制甲醇合成气过程中,合成气中的有机氯 化物主要通过烯烃与氯化氢的加成反应而生成,因 此升高反应温度、降低反应压力会抑制煤制合成气 过程中有机氯化物的生成。

参考文献:

- [1] 易学睿,王强,田华等.我国现代煤化工产业"十四五"发展布局展望[J].现代化工,2022,42(8):16-21.
- [2] 宁坚,徐顺塔,靳虎等.高氯煤燃烧过程中氯的释放及迁移特 性[J].燃烧科学与技术,2020,26(4):340-347.
- [3] 陈寻成.催化重整装置的氯化铵结盐与腐蚀问题[J].石油化工 腐蚀与防护,2003(2):11-13.
- [4] 孔秋福,赵亚洲,张亚杰.气化水洗塔带水原因分析及对策研 究探讨[J].中国石油和化工标准与质量,2021,41(15): 41-42.
- [5] 于利红.煤气化合成气初步净化技术进展及专利分析[J].煤化 工,2019,47(5):68-71.
- [6] 常岳春,朱建华,武本成.离子液体催化 C4 烷基化油中氯代烃 的燃烧产物分析[J].当代工,2019,48(5):1087-1092.
- [7] 魏玉卿,朱建华,武本成.离子液体烷基化油中氯代烃生成机 理的探究[J].石油化工高等学校学报,2019,32(1):15-20.
- [8] 朱开宏,袁渭康.化学反应工程分析[M]. 北京:高等教育出版 社,2002:1-23.
- [9] 陈博,朱建华,岳长涛.利用原子系数矩阵法确定复杂反应体 系独立反应的方法探讨与改进[J].化学反应工程与工艺, 2012,28(1):57-64.
- [10] 傅献彩,沈文霞,姚天扬.物理化学上册[M].5版.北京:高等 教育出版社,2005:160-162.
- [11] 刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化 学工业出版社,2002:26-42,140-161.
- [12] 马沛生,夏淑倩,夏清.化工物性数据简明手册[M].北京:化 学工业出版社,2013:205-226.
- [13] 伊赫桑·巴伦.纯物质热化学数据手册[M].北京:科学出版 社,2003.
- [14] 董新法,方利国,陈砺.物性估算原理及计算机计算[M].北 京:化学工业出版社,2006:172-180.
- [15] 郝清泉,刘宗鹏,朱建华.废塑料热解油中有机氯化物鉴定及加氢脱氯的热力学和反应机理[J].石油化工,2020,49(1): 48-55.