Pt、Cu 共改性 TiO2 选择性光催化还原 CO2 制 CH4

李长华1,赵江婷2,熊 卓2,赵永椿2

(1.国家能源集团江西发电有限公司,江西 丰城 331100;2.华中科技大学 煤燃烧国家重点实验室,湖北 武汉 430074)

摘 要:光催化还原 CO₂是具有前景的可再生能源技术,但由于光生电子-空穴对的快速复合和对可 见光的有限利用,TiO₂表现出较低的光催化反应效率,为了提高 TiO₂光催化还原 CO₂的效率,用金属 改性 TiO₂是一种有效的方式。笔者通过化学还原法将 Pt 和 Cu₂O 纳米颗粒沉积在锐钛矿 TiO₂晶体 表面,系统研究了 Pt、Cu 共改性对 TiO₂光催化还原 CO₂性能的影响。光催化试验结果表明,Pt 沉积有 利于生成 CH₄和 H₂,而 Cu₂O 会抑制 H₂的生成,且对 CH₄的选择性低于 Pt。Pt 和 Cu₂O 同时沉积在 TiO₂晶体上时,H₂的生成受到抑制,CO₂被选择性地还原为 CH₄,选择性达 96.6%。催化剂表征结果表明,Pt 能捕获光生电子,从而提高催化剂上的电子密度,有利于多电子还原反应发生,高选择性地生成 CH₄。 Cu₂O 提高了催化剂对 CO₂的化学吸附能力,同时对水的吸附能力较弱,从而抑制 H₂的生成,提高了光生电子对 CO₂还原的选择性。此外,反应后的 Pt-Cu/TiO₂中 Cu₂O 几乎被完全还原为 Cu,这 可能是由于在光催化反应过程中,Pt 沉积可促进光生电子向 Cu₂O 迁移,在 Cu₂O 还原为 Cu 的同时为 光催化还原反应提供更多的电子,有利于 CH₄的选择性生成。因此,Pt-Cu/TiO₂催化剂可将 CO₂选择 性地还原为 CH₄。经 3 次循环试验,催化剂的活性未降低,具有良好的稳定性。

关键词:CO2光催化还原;TiO2;选择性;共沉积;CH4

中图分类号:TQ53;TK114 文献标志码:A 文章编号:1006-6772(2020)04-0162-06

Selective photocatalytic reduction of CO₂ into CH₄ by Pt and Cu co-modified TiO₂

LI Changhua¹, ZHAO Jiangting², XIONG Zhuo², ZHAO Yongchun²

(1.National Energy Group Jiangxi Power Generation Corporation, Fengcheng 331100, China; 2. State Key Laboratory of

Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: Photocatalytic reduction of CO_2 is a challenging renewable energy production technology. However, due to the rapid recombination of photogenerated electron hole pairs and the limited utilization of visible light, TiO₂ shows low photocatalytic reaction efficiency. In order to improve the efficiency of photocatalytic reduction of CO_2 by TiO₂, it is an effective way to modify TiO₂ by metal. In this paper, Pt and Cu₂O nanoparticles were co-deposited on the surface of TiO₂ nanocrystals by chemical reduction method. The influence of Pt and Cu co-modification on the photocatalytic reduction of CO_2 by TiO₂ was systematically studied. The experimental results show that Pt deposition tends to promote the production of CH₄ and H₂. However, Cu₂O can suppress H₂ production and exhibites lower CH₄ selectivity than that of Pt. Furthermore, after co-deposition of Pt and Cu₂O on TiO₂ crystal, the formation of H₂ is inhibited, and CO₂ is selectively converted to CH₄, with a selectivity of 96.6%. The characterization experiments and a series of photocatalytic reduction of CO₂ on TiO₂ and inhibites the adsorption of water, thus the formation of H₂ is inhibited and the selectivity of photogenerated electrons for CO₂ and inhibites the adsorption of water, thus the formation of H₂ is inhibited and the selectivity of photogenerated electrons for CO₂ reduction is improved. In addition, Cu₂O in Pt-Cu/TiO₂ after the reaction is almost completely reduced to Cu, which may be caused by the process of photocatalytic reaction, Pt deposition can promote the transfer of photogenerated electrons to Cu₂O. This phenomenon can provide more electrons for the photocatalytic reduction while reducing Cu₂O to zero valent Cu, which is conducive to the selective generation of CH₄. After three cycles of tests, the activity of the catalyst is not reduced and has good stability.

收稿日期:2020-03-20;责任编辑:张晓宁 DOI:10.13226/j.issn.1006-6772.20032011

基金项目:国家自然科学基金资助项目(51706082,U1610110)

作者简介:李长华(1986—),男,江西上饶人,工程师,主要从事电站污染物控制研究。E-mail:174219053@qq.com。通讯作者:熊卓,讲师。E-mail:zxiong@hust.edu.cn

引用格式:李长华,赵江婷,熊卓,等.Pt、Cu共改性TiO2选择性光催化还原CO2制CH4[J].洁净煤技术,2020,26(4):162-167.

LI Changhua, ZHAO Jiangting, XIONG Zhuo, et al. Selective photocatalytic reduction of CO₂ into CH₄ by Pt and Cu co-modified TiO₂[J].Clean Coal Technology, 2020, 26(4):162-167.

Key words: CO_2 photocatalytic reduction; TiO_2 ; selectivity; co-deposited; CH_4

0 引 言

CO₂是导致全球变暖的主要温室气体之一。利 用太阳能将 CO₂转化为可再生能源,不仅可减少 CO₂排放,还可提供有用的能源^[1-2]。自 1979 年 Inoue 等首次报道了半导体材料光催化还原 CO₂后, TiO₂由于其高稳定性、低成本和低毒性已成为最受 欢迎的光催化剂之一^[3]。但由于光生电子-空穴对 的快速复合和对可见光的有限利用,TiO₂表现出较 低的光催化反应效率^[4]。此外,CO₂在 TiO₂表面的 弱吸附也限制了 CO₂光催化还原的效率。

为了提高 TiO₂光催化还原 CO₂的效率,近年来 报道了制备具有不同结构或形态的 TiO₂^[5]、用贵金 属改性 TiO₂^[6],以及将 TiO₂与其他材料复合^[7]等方 法。文献[8]研究表明,{101}和{001}双晶面暴露 的 TiO₂纳米晶体显示出较强的 CO₂光催化还原活 性,这是由于其促进了光生电荷分别向 TiO₂的不同 晶面转移,形成光生电荷空间分离,从而抑制了光生 电子和空穴的复合。但同时,大部分方法也促进了 水分解产生 H₂,使反应选择性仍较差。

Xie 等^[9]研究发现, MgO 可增强 CO₂的化学吸 附能力, Pt 可提高催化剂的局部电子密度, 因此 Pt-MgO/TiO₂提高了 CO₂光催化还原制 CH₄的选择 性。Zhai 等^[10]制备了 Pt@ Cu₂O/TiO₂核壳结构的催 化剂,发现其在抑制水还原为 H₂的同时, 促进了 CO₂的还原。Zhao 等^[11]发现, 在 TiO₂中引入 Ag 助 催化剂后, H₂和 CO 产率显著增加。Varghese 等^[12] 发现, Cu 助催化剂有利于 CO₂的还原且不利于产 氢。助催化剂不仅能改变 TiO₂光催化 CO₂还原效 率,还会影响产物的选择性。合理设计助催化剂, 使 CO₂选择性还原为特定产物仍极具挑战性。

本文采用溶剂热法制备了 {101 } 和 {001 } 双晶 面暴露的锐钛矿型 TiO₂纳米晶体,并将 Pt 和 Cu₂O 纳米颗粒沉积在 TiO₂晶体表面,系统研究了 Pt、Cu 助催化剂对光催化 CO₂还原性能和产物选择性的影 响,提出了可能的催化反应机理,为高选择性 CO₂还 原光催化剂的设计提供了新思路。

1 试 验

1.1 催化剂制备

采用溶剂热法制备双晶面暴露 TiO₂纳米晶体。 将不同含量的氢氟酸和 10 mL 钛酸丁酯滴入搅拌中 的 90 mL 乙醇中,充分搅拌后,在 200 mL 水热反应 釜中进行水热反应,反应温度 180 ℃,时间 24 h。用 去离子水和无水乙醇先后清洗反应得到的样品各 3 次,并用转速为3 000 r/min 的离心分离机分离样品 15 min,将得到的浅蓝色沉淀置于 70 ℃烘箱内干燥 12 h。为了去除样品表面的氟离子,在 500 ℃ 的马 弗炉里煅烧干燥后的样品 2 h。

采用化学还原法将 Pt 及 Cu₂O 纳米颗粒沉积在 TiO₂表面。将 0.1 g TiO₂粉末分散在 100 mL 处于磁 力搅拌状态的去离子水中,然后加入一定量氯铂酸 和乙酸铜(金属/TiO₂质量比均为 1%),搅拌 30 min 后,逐滴加入 2.5 mL NaBH₄和 NaOH 的混合溶液, 其中 NaBH₄浓度为 0.1 mol/L, NaOH 浓度为 0.5 mol/L。待溶液变色后,继续搅拌 1 h,用转速为 3 000 r/min 的离心分离机分离样品 15 min,在离心 分离过程中用去离子水对样品进行清洗,离心得到 的样品放入 70 ℃烘箱内干燥 12 h。干燥后的样品 即为 Pt、Cu 共沉积的 TiO₂纳米晶体。作为对照,其 他条件不变,仅加入氯铂酸或乙酸铜,分别合成 Pt 沉积 TiO₂晶体和 Cu 沉积 TiO₂晶体。

1.2 催化剂表征

晶体结构:荷兰 PANalytical B.V.公司的 X'Pert PROX 型 X 射线衍射仪。

比表面积:氮气吸脱附法(美国 Micrometrics 公司的 ASAP 2020 型比表面与孔径分析仪)。

样品内部微观结构:荷兰 FEI 公司的 Tecnai G2 F30 场发射透射电子显微镜。

表面元素的化学形态:日本岛津-Kratos 公司的 AXIS-ULTRA DLD 光电子能谱仪。

光致发光光谱:法国 Horiba JobinYvon 公司 LabRAM HR800 型激光共焦拉曼光谱仪。

催化剂的 CO₂吸附特性采用 CO₂程序升温脱附 法。将 50 mg 样品放入石英管反应器中,在高纯氦 气气氛(30 mL/min)下加热至 300 ℃并稳定 30 min,升温速率为 25 ℃/min。将催化剂冷却至 30 ℃,气氛切换为 CO₂,通气 30 min,再用氦气 (30 mL/min)吹扫催化剂 30 min。在氦气气氛 (30 mL/min)下,以 10 ℃/min 的升温速率将反应管 温度升至 750 ℃进行程序升温脱附分析,反应器排 出的 CO₂量通过 TCD 检测器分析。

1.3 光催化还原 CO₂

CO₂光催化还原反应系统如图 1 所示,反应器 顶部为石英玻璃,在反应器上方约 10 cm 处放置作

为光源的氙灯,在反应器底部加入 10 mL 去离子水, 距液面 2 cm 处放置一个装有 20 mg 催化剂的培养 皿。光照前,用真空泵抽净反应器中的空气后,向反 应器内通入高纯 CO₂(99.999%)。光照开始后,反 应温度通过循环冷却水维持在 20 °C,反应器内气体 总压力为 71 kPa,其中水蒸气分压为 2.3 kPa。每隔 15 min 采用气相色谱(GC)对反应器中的产物浓度 进行分析。该气相色谱配有氢离子火焰检测器 (FID)、热导检测器(TCD)及甲烷转化炉。样品气 中 H₂、O₂和 N₂浓度通过 TCD 检测器检测, CH₄和 CO 浓度由 FID 检测器分析。

图1 CO₂光催化还原反应系统

Fig.1 Reaction system of CO2 photocatalytic reduction

2 试验结果与讨论

2.1 催化剂表征

图 2 为所制备样品的 XRD 谱图。可知,TiO₂为 锐钛矿型,未观察到 Pt 或 Cu 的衍射峰,这可能是由 于金属物种在 TiO₂晶体表面的负载量低所致^[13]。 此外,沉积了 Pt 和 Cu 样品的峰值与 TiO₂相比没有 明显变化,说明 2 种金属物种的沉积对锐钛矿型 TiO₂的晶体结构无明显影响。采用 N₂吸附法对催 化剂比表面特性进行分析。表 1 为样品的比表面 积、孔容和孔径,可以看出,所有样品的 BET 比表面 积几乎相同(约为 165 m²/g),表明金属纳米颗粒沉 积对 TiO₂纳米晶体的比表面积、孔径和孔结构几乎 无影响。

Fig.2 XRD patterns of the catalysts

表1 不同催化剂的比表面积、孔体积、孔径

 Table 1
 Specific surface areas, pore volumes, and pore sizes of the catalysts

		-	
样品	比表面积/	孔容/	孔径/
	$(m^2\boldsymbol{\cdot}g^{-1})$	$(\mathrm{cm}^3\cdot\mathrm{g}^{-1})$	nm
${ m TiO}_2$	167.4	0.28	6.7
Cu/TiO_2	165.0	0.30	7.2
Pt/TiO ₂	165.6	0.29	6.9
Pt-Cu/TiO ₂	166.8	0.29	7.0

催化剂样品的 TEM 和 HR-TEM 图如图 3 所示。纯 TiO₂纳米晶体为纳米片,TiO₂纳米晶体的边 长和厚度约为 50、20 nm。图 3(b)中,TiO₂纳米晶体 表面有许多小黑点,根据晶面间距,这些黑点为 Pt 纳米颗粒^[14]。图 3(c)中,TiO₂纳米晶体清晰可见, 但很难看到含 Cu 颗粒,这可能是由于 Cu 物质尺寸 小,且结晶度低的缘故。在高分辨率的 TEM 图中, 可清楚观察到沉积在表面上的 Cu 氧化物纳米颗 粒,根据图 3(c)中的晶面间距,推断其为 Cu₂O 纳米 颗粒。图 3(d)中可清晰看到 Pt 和 Cu₂O 纳米颗粒 同时沉积在 TiO₂晶体表面。

图 4 为光催化剂的 Pt 4f 和 Cu 2p 的 XPS 谱图。 由图 4(a)可知, Pt 4f 区域包含 2 个峰,可分为 2 对 XPS峰,分别为 Pt⁰峰(70.6 eV 和 74.1 eV) 和 Pt²⁺峰 (71.4 eV 和 75.5 eV)^[15],这是由于制备过程中 Pt 纳 米颗粒表面被氧化产生少量 $Pt^{2+[16-17]}$ 。共沉积后 Pt 4f 的束缚能几乎不变,表明共沉积 Cu 对 Pt 上的电子 密度无明显影响。由图 4(b)可知, Cu/TiO₂样品的 Cu $2p_{3/2}$ 束缚能约为 932.5 eV,表明 Cu₂O 是 Cu 的主 要存在形式^[18],这与 TEM 分析结果一致。与 Cu/ TiO₂催化剂的峰位置相比, Pt-Cu/TiO₂催化剂的 Cu 2p 峰略向低能级方向移动,说明共沉积 Pt 可提高 Cu₂O 纳米颗粒上的电子密度,因为 Pt 的引入促进了 电子向 Cu₂O 纳米颗粒移动,有利于 CO₂还原为 CH₄ 的多电子还原反应过程进行。

催化剂的 PL 谱如图 5 所示,除强度不同外,4 种 催化剂的荧光光谱图相似。一般来说,荧光强度随着 光生电子-空穴复合的减少而下降^[19],因此 PL 谱常 被当作光生电子-空穴复合被抑制的直接证据。由 图 5 可知,TiO₂的 PL 谱强度最大,Pt 和 Cu₂O 纳米颗 粒在 TiO₂纳米晶体上的沉积均使 TiO₂纳米晶体的 PL 谱强度减弱,说明光生电子和空穴的复合受到不同程 度的抑制,这是因为沉积在 TiO₂晶体上的 Pt 和 Cu₂O 纳米颗粒可轻易地捕获光生电子,有利于光生电子和 空穴发生空间分离。Pt/TiO₂的 PL 强度较低,说明 Pt 纳米颗粒比 Cu₂O 纳米颗粒更能有效抑制光生电荷 的复合。Pt-Cu/TiO₂具有最低的 PL 强度,说明 Pt、 Cu₂O 可有效促进光生电荷分离,可能有助于提高 Pt-Cu/TiO₂的光催化活性。

Fig.5 Photoluminescence spectra of the catalysts

2.2 CO₂光催化还原

图 6 为不同催化剂光催化还原 CO₂的 H₂、CO 和 CH₄的产量,随着反应进行,光催化还原 CO₅的产量 逐渐累积。沉积 Cu,O 后,几乎无 H,产生;沉积 Pt 和 Cu,O均不利于 CO 生成; 沉积 Pt 和 Cu,O 有利于 CH₄生成。图 7 为 3 种产物的产率和产物选择性。 与纯 TiO,相比, Pt/TiO,显著提高了 H,和 CH4产量, 同时抑制了 CO 生成,这主要是因为光生电子-空穴 复合被有效抑制,从而有利于多电子反应,高选择性 生成 CH₄。与 Pt 不同, Cu₂O 促进 CH₄的生成, 但抑 制H,和CO的生成,且Cu/TiO,催化下的CH₄产率低 于 Pt/TiO₂,这是因为 Cu/TiO₂具有相对较高的电子 空穴复合速率。另外,Pt更倾向于活化H₂O,而Cu₂O 倾向于还原 CO2。对于共沉积 Pt-Cu/TiO2催化剂, 在 Pt 和 Cu₂O 共同作用下, H₂和 CO 的生成均受到有 效抑制, CO2 高选择性地转化为 CH4, 选择性达 96.6% 。

图 8 为 Pt-Cu/TiO₂催化剂的循环性能。第 1 次循环后,收集反应后的 Pt-Cu/TiO₂催化剂,依次 重复试验^[20]。由图 8 可以看到,在反应初期,第 2 次和第 3 次的 CH₄产率高于第 1 次,这可能是因为 在第 1 次反应结束后,部分产物没有完全脱附,第 2 次循环反应时,开灯瞬间,温度升高,有利于产物脱 附。但总体上,第 2 次和第 3 次循环中的 CH₄和 CO 产率与第 1 次循环相似,说明在催化反应中 Pt-Cu/ TiO₂起到了催化作用。从图 8 还可以看出,该反应 条件下,Pt-Cu/TiO₂催化剂的循环性能良好。

2.3 反应机理

为了研究 Pt 和 Cu₂O 纳米颗粒对催化剂 CO₂吸 附的影响,对催化剂样品进行 TPD-CO₂测试,结果如 图 9 所示。129 ℃时,纯 TiO₂上的 CO₂发生脱附。沉 积 Pt 后,CO₂的脱附峰向低温方向略有移动,说明 Pt

Fig.6 Production of H₂, CO and CH₄ of Photocatalytic reduction

图7 光催化活性及产物选择性

Fig.7 Photocatalytic activities and selectivities of the catalysts

图 8 Pt-Cu/TiO2催化剂循环光催化性能

Fig.8 Cycle photocatalytic performance of Pt-Cu/TiO₂ catalyst 对 CO₂的吸附影响不明显。沉积 Cu₂O 后, CO₂的吸附位点发生变化, 且脱附需要更高的温度(148、374、500 ℃), 说明沉积 Cu₂O 使 TiO₂和 CO₂的结合 更为紧密, 这可能与铜氧化物呈碱性有关。共沉积

Pt、Cu₂O 时,其 CO₂脱附峰的温度仍较高,分别为 394 ℃和 497 ℃,说明 Pt、Cu₂O 共沉积不会使 TiO₂ 与 CO₂的紧密结合减弱,有利于 CO₂的吸附,不利于 水的吸附,从而可抑制 H₂的产生。

通常,Pt 是水还原的活性中心,而 Cu₂O 是 CO₂ 还原的活性中心。考虑到助催化剂在光催化反应中 可能会发生转化,因此对反应前后的催化剂进行 XPS 分析,如图 10 所示。图 10(a)中,Pt 的化学状 态较稳定,因为在反应前后 Pt 4f 峰的束缚能几乎无 变化,结合其光催化活性,可推测在 Pt/TiO₂中,Pt 是 CO₂和水还原的活性位点。图 10(b)中,反应前 以 Cu₂O 形式存在,反应后出现零价 Cu 的峰,这可 能是由于 Cu₂O 被捕获的光生电子还原的缘故。图 10(c)、(d)表明,反应后的Pt-Cu/TiO₂中,Cu₂O 几

Fig.10 XPS spectra of the catalyst before and after photocatalytic reaction

乎被完全还原为零价 Cu,这可能是因为在光催化反应过程中,Pt 沉积可促进光生电子向 Cu₂O 迁移,在还原 Cu₂O 为零价 Cu 的同时为光催化还原反应提供更多的电子,有利于 CH₄的选择性生成。

3 结 论

1) Pt 沉积促进了 H₂和 CH₄生成,抑制 CO 生成,Cu₂O 沉积有利于 CH₄生成,抑制 H₂和 CO 生成。

2) Pt 和 Cu₂O 共沉积在 TiO₂晶体上时, H₂和 CO 的生成均受到有效抑制, CO₂选择性转化为 CH₄(选择性为 96.6%)。这是由于 Pt 纳米颗粒捕获了光生 电子, 增加了催化剂上的电子密度。

3)进一步负载 Cu₂O 后, TiO₂表面 CO₂吸附增 强,水的吸附被削弱,同时 Pt 沉积可促进光生电子 向 Cu₂O 迁移。

4) 在 Pt 和 Cu₂O 共同作用下, Pt-Cu/TiO₂催化 剂可将 CO₂选择性地还原为 CH₄, 经 3 次循环试验, 催化剂的活性未降低, 具有良好的稳定性。

参考文献(References):

- [1] CHENG Y, NGUYEN V, CHAN H, et al. Photo-enhanced hydrogenation of CO₂ to mimic photosynthesis by CO co-feed in a novel twin reactor[J]. Applied Energy, 2015, 141:318-324.
- [2] INOUE T, FUJISHIMA A, KONISHI S, et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders [J]. Nature, 1979, 277:637-638.
- [3] XIONG Z, ZHAO Y, ZHANG J.Efficient photocatalytic reduction of CO₂ into liquid products over cerium doped titania nanoparticles synthesized by a sol-gel auto-ignited method [J]. Fuel Processing Technology, 2015, 135:6-13.
- [4] PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Applied Catalysis B – environmental, 2012, 125: 331–349.
- [5] LI Y, WANG W, ZHAN Z, et al. Photocatalytic reduction of CO₂ with H₂O on mesoporous silica supported Cu/TiO₂ catalysts [J]. Applied Catalysis B-environmental, 2010, 100(1):386-392.
- [6] ZHANG Z, DONG B, ZHANG M, et al. Electrospun Pt/TiO₂ hybrid nanofibers for visible-light-driven H₂ evolution [J]. International Journal of Hydrogen Energy, 2014, 39(34):19434-19443.
- [7] KONG D, TAN J Z, YANG F, et al. Electrodeposited Ag nanoparticles on TiO₂ nanorods for enhanced UV visible light photoreduction CO₂ to CH₄[J]. Applied Surface Science, 2013, 25:105–110.
- $\label{eq:starsest} \begin{bmatrix} 8 \end{bmatrix} \quad XIONG \mbox{ Z}, LUO \mbox{ Y}, ZHAO \mbox{ Y}, et al. Synthesis, characterization and enhanced photocatalytic CO_2 reduction activity of graphene supported TiO_2 nanocrystals with co-exposed <math display="inline">\{001\}$ and $\{101\}$ facets

[J]. Physical Chemistry Chemical Physics, 2016, 18 (19): 13186-13195.

- [9] XIE S, WANG Y, ZHANG Q, et al.MgO- and Pt-promoted TiO₂ as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water[J].ACS Catalysis,2014,4(10):3644-3653.
- [10] ZHAI Q,XIE S,FAN W,et al.Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper (1) oxide co-catalysts with a core-shell structure [J].Angewandte Chemie, 2013,52(22):5776-5779.
- [11] ZHAO C, KRALL A, ZHAO H, et al. Ultrasonic spray pyrolysis synthesis of Ag/TiO₂ nanocomposite photocatalysts for simultaneous H₂ production and CO₂ reduction[J].International Journal of Hydrogen Energy, 2012, 37(13):9967–9976.
- [12] OOMMAN K V, MAGGIE P, THOMAS J. High-rate solar photocatalytic conversion of CO and water vapor to hydrocarbon fuels
 [J].Nano Letters, 2009,9(2):731-737.
- XIONG Z, WANG H, XU N, et al. Photocatalytic reduction of CO₂ on Pt²⁺-Pt⁰/TiO₂ nanoparticles under UV/Vis light irradiation: A combination of Pt²⁺ doping and Pt nanoparticles deposition[J]. International Journal of Hydrogen Energy, 2015, 40 (32): 10049-10062.
- [14] YU J, LOW J, XIAO W, et al. Enhanced photocatalytic CO₂ reduction activity of anatase TiO₂ by co-exposed {001} and {101} facets[J]. Journal of the American Chemical Society, 2014, 136 (25):8839-8842.
- [15] FANG B, CHAUDHARI N K, KIM M, et al. Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell [J]. Journal of the American Chemical Society, 2009, 131(42):15330-15338.
- WANG W, AN W, RAMALINGAM B, et al. Size and structure matter: Enhanced CO₂ photoreduction efficiency by size Resolved ultrafine Pt nanoparticles on TiO₂ single crystals [J]. Journal of the American Chemical Society, 2012, 134 (27): 11276-11281.
- [17] MAO J, YE L, LI K, et al. Pt-loading reverses the photocatalytic activity order of anatase TiO₂ {001} and {010} facets for photoreduction of CO₂ to CH₄[J]. Applied Catalysis B-environmental, 2014,63:855-862.
- [18] CHEN B, NGUYEN V, WU J C, et al. Production of renewable fuels by the photohydrogenation of CO₂: Effect of the Cu species loaded onto TiO₂ photocatalysts[J].Physical Chemistry Chemical Physics, 2016, 18(6):4942-4951.
- [19] WU J,LIU Q,GAO P, et al.Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO₂[J].Materials Research Bulletin, 2011, 46(11):1997-2003.