神华煤直接液化工艺中硫元素的转化

吴 $琼^1$ 高宇 z^2 刘柯澜³

(1.中国神华煤制油化工有限公司,北京 100011;2.中国神华煤制油化工有限公司鄂尔多斯煤制油分公司,内蒙古鄂尔多斯 017000; 3.神华宁煤集团煤制油分公司,宁夏 银川 750000)

摘 要:为降低煤炭利用过程中硫排放,通过讨论神华煤直接液化过程中硫元素在原料、催化剂助剂、 中间产品、成品油产品、三废中的存在形态及含量变化,分析了煤炭中硫元素经煤气化反应、变换气净 化和煤液化、加氢稳定、加氢改质三级加氢反应的转化和脱除机理及效果,并通过 DCS 数据采集和现 场采样分析化验,对神华鄂尔多斯煤直接液化项目全流程硫平衡进行了测算。结果表明,脱硫后生产 出的低硫清洁油品完全达到国 V 标准,可以大幅降低汽车尾气的 SO₂排放;煤直接液化工艺将注入的 硫与煤中的部分硫转化成硫磺,以硫磺形态回收 38.43%的硫元素并循环利用,同时将无法回收利用 的硫元素转化到煤液化油渣和灰渣中集中处理,防止污染环境。

关键词:煤直接液化;硫元素;加氢反应;煤气化;脱硫

中图分类号:TQ529 文献标志码:A 文章编号:1006-6772(2016)06-0040-06

Conversion of sulfur of direct Shenhua coal liquefaction process

WU Qiong¹ ,GAO Yulong² ,LIU Kelan³

(1. China Shenhua Coal to Liquid and Chemical Co. Ltd. Beijing 100011 China; 2. China Shenhua Coal to Liquid and Chemical Ordos

Coal Liquefaction Company Ordos 017000 China; 3.Shenhua Ningxia Coal Industry Group Coal to Liquid Company Yinchuan 750000 China) Abstract: In order to reduce sulfur emission during coal utilization the conversion of elementary forms and contents of sulfur in raw materials catalysts promoters intermediate product product oil and wastes of direct Shenhua coal liquefaction process were discussed. The transform and removal mechanism effects of sulfur were analyzed during coal gasification purification of shifted gas coal liquefaction hydrogenation stabilization hydro fining and 3-level hydrogenation reaction processes. The full process sulfur balance was measured and analyzed by using DCS data collection and spot sampling methods. The results showed that the gasoline product after desulfurization process completely met the standard of national V so the SO₂ emissions of automobile exhaust could be significantly reduced. The technology transferred injection sulfur and parts of coal sulfur to sulfur 38.43% sulfur was recycled. The sulfur which couldn't be reused was transfered into oil dregs and ashes in coal liquefaction. The process could protect environment effectively.

Key words: direct coal liquefaction; sulfur element; hydrogenation reaction; coal gasification; desulfurization

0 引 言

近年来我国雾霾天气频繁出现,波及范围广,持续时间长,严重危害到人类的健康。大量研究证明 SO₂、NO_x和可吸入颗粒物是雾霾的主要组成,认 为煤炭燃烧的烟气、工业废气和汽车尾气等排放大 量的 SO₂和 NO_x 与水泥、建筑等行业产生的扬尘结 合形成了雾霾^[1]。由于我国富煤贫油少气 3 000 m 以浅煤炭资源总量 10.3 万亿 t,可供持续稳定开发 200 a 以上。2015 年我国煤炭消费 39.6 亿 t,占能 源消费总量的 64%。以煤为主的能源格局在相当 长时期内难以改变 同时"低质油品退市难"的问题 一直无法解决 因此迫切需要加大煤炭的清洁高效 利用和转化,推进绿色煤炭技术变革。王文峰等^[2]

基金项目:神华集团科研资助项目(SHJT-13-13)

作者简介:吴 琼(1983—),男,内蒙古鄂尔多斯人,工程师,硕士,从事煤制油化工行业规划与项目前期管理工作。E-mail:wuqiong@csclc.com 引用格式:吴 琼,高宇龙,刘柯澜.神华煤直接液化工艺中硫元素的转化[J].洁净煤技术,2016,22(6):40-45,51.

收稿日期:2016-10-09;责任编辑:白娅娜 DOI: 10.13226/j.issn.1006-6772.2016.06.008

WU Qiong GAO Yulong LIU Kelan. Conversion of sulfur of direct Shenhua coal liquefaction process [J]. Clean Coal Technology ,2016 ,22(6) : 40-45 51.

对煤中有害元素的分选洁净潜势进行研究,认为物 理分选能够降低煤中灰分与硫分,硫分的脱除率大 于 30% 相对较低。洪伟等^[3] 论述了煤中有害元素 迁移的相关研究 探明煤炭转移、储存过程中品质指 标(如水分、灰分、发热量)的波动以及煤中有害元 素在煤炭周转、利用过程中的迁移和转化 认为煤炭 分选在提高煤热值 ,降低煤中硫分、灰分的同时 ,有 效脱除了微量有害元素。夏筱红^[4]研究了煤中有 害元素直接液化迁移行为及其环境效应,认为高硫 煤直接液化的主要环境效应是硫的排放污染。在氢 气气氛下 硫元素易被还原生成 H₂S、SO₄等气体 ,导 致排硫量增加;同时进入液态产物,呈有机含硫化合 物形式存在 主要分布在重质馏分中 往往比原煤中 硫化物更难脱除。神华集团探索煤炭清洁利用过程 中开发了具有自主知识产权的神华煤直接液化工 艺 并建设运营了神华鄂尔多斯煤直接液化示范工 程 原料煤通过 3 次加氢反应 ,生产出低硫低氮的清 洁油品,工程工艺流程包括备煤、催化剂制备、煤直 接液化、加氢稳定、加氢改质、轻烃回收、油渣成型、 空分、煤制氢及配套的气体脱硫、污水汽提、硫磺回 收、酚回收、污水处理场等公用工程装置。笔者通过。 分析神华煤直接液化过程中硫元素在原料、催化剂 助剂、中间产品、成品油产品、三废中的存在形态及

含量变化、研究煤炭中硫元素经煤气化反应、变换气 净化和煤液化、加氢稳定、加氢改质三级加氢反应的 转化和脱除的机理及效果,并对神华鄂尔多斯煤直 接液化项目全流程硫平衡进行了测算,以期降低煤 炭利用过程中硫排放。

1 煤直接液化中硫元素的形态及含量变化

煤直接液化过程是将煤破碎后制备成油煤浆, 在高温高压和催化剂的作用下,与供氢溶剂和氢 气中的离子分子氢发生加氢裂化反应,从而使固 态煤转化成液体石油组分及部分油渣的过程,液 体组分继续进行加氢裂化、加氢精制、加氢改质反 应,生产出合格的柴油、航煤、石脑油和液化气产 品。在整个工艺过程中,随着反应的进行,硫元素 在原料、助剂、中间产品、产品、三废中的形态和含 量都发生了变化。

1.1 原料中硫元素的形态及含量

1.1.1 原料煤中硫元素的形态及含量

神华鄂尔多斯煤直接液化项目原料煤主要有煤 液化精煤、气化原煤、乌海煤。煤液化精煤的原煤来 自神东上湾煤矿,经分选后达到煤液化煤质要求。 气化原煤同样来自神东上湾煤矿。乌海煤为神华乌 海煤。3 种原料煤的煤质分析见表1。

煤样		工业分析/%							
		全水	水分	灰分	挥发分	固定碳	硫铁矿硫(S _{p,d})	硫酸盐硫(S _{s ,d})	有机硫(S _{o ,d})
煤液化精煤	设计值	16~17	9.00	5.32	35.03	59.65	0. 26	0.01	0. 15
	实测值	15.70	9.50	4.40	34.70	51.40		全硫 0.32	
气化原煤	设计值	14.00	9.00	7.00	34.41	58.59	0.26	0.01	0.15
	实测值	14.45	9.43	6.92	33.94	49.70		全硫 0.31	
乌海煤	实测值	3.40	1.20	31.68	22. 20	44.92		全硫 0.82	

表 1 3 种原料煤的煤质分析 Table 1 Coal qualities of three kinds of coals

注: 乌海煤实测值为 2015 年装置检修后取样实测平均值。

由表1可知,煤液化精煤设计煤样全硫最高含量1.27%,最低含量0.05%,平均含量0.31%,硫元 素分为无机硫和有机硫两类。无机硫主要以黄铁矿 硫、硫酸盐硫形态存在。黄铁矿硫含量为0.26%, 含量相对较高;硫酸盐硫含量为0.01%,含量较低 且相对稳定;有机硫主要以硫醇、硫醚、噻吩、苯并噻 吩、二苯并噻吩等形态存在,含量约0.15%。实测 全硫含量0.32%。气化原煤硫元素的存在形态及 含量与煤液化精煤设计指标相同,实测全硫含量 0.31%。神华鄂尔多斯煤直接液化项目最初设计不 需要乌海煤,投产后为了保证壳牌气化炉稳定运行, 在气化原煤中添加了少量硫含量较高的乌海煤,要 求乌海煤全硫含量0.80%~1.00%,乌海煤同样以 硫铁矿硫、硫酸盐硫和硫醚、硫醇、噻吩、苯并噻吩、 二苯并噻吩等有机硫形式存在^[5-7],实测全硫含量 0.82%。

1.1.2 燃料油中硫元素

煤直接液化过程中采用了加工外购廉价燃料油

替代高价的溶剂油 燃料油主要为煤焦油成分,含硫 量相对较高,为0.10%~0.25%,主要以噻吩、硫醇、苯 硫酚等形态存在。燃料油性质分析见表2。由表2可 知 2015 年取样实测全硫含量为0.24%。

表 2 燃料油性质分析 Table 2 Qualities analysis of fuel oil

氯含量/ (mg・I ⁻¹)	氧含 量/%	水分/ %	正己烷不溶物含量/%	硫含 量/%	
21.00	6. 22	1. 20	2. 89	0. 24	0. 63

1.2 中间产品硫元素的形态及含量

 1) 煤液化油。煤液化油中硫含量一般为 0.03%~0.07%, 实测硫含量0.0306%; 其典型含硫 化合物主要有硫醇类、二硫化物、硫醚类和杂环含硫 化合物,硫醇一般富集于低沸点馏分中,杂环硫化物 普遍存在于各馏分中,随着沸点增加,多苯并噻吩和 芳烃缩合噻吩及其衍生物含量增加,低温馏分中曾 检测到16种含硫化合物。

2) 加氢改质原料。加氢改质原料中氧、氮含量 较高,硫含量较低,一般小于50×10⁻⁶,实测硫含量 16.6×10⁻⁶。由于容易脱除的硫原子在加氢稳定反 应过程基本被脱除,改质原料中硫元素主要以较难 脱除的二苯并噻吩形式存在。

1.3 产品中硫元素的形态及含量

 1) 石脑油产品。石脑油产品中硫元素主要以 噻吩同系物形态存在,同时有极微量的硫醇性硫,重 石脑油设计硫含量小于1×10⁻⁶ 实测值为未检出S、 N等杂原子化合物;轻石脑油设计硫含量0.5×10⁻⁶, 实测值为未检出 S、N 等杂原子化合物。

2) 柴油产品。柴油产品中硫元素主要以噻吩 同系物形态存在,同时有极微量的硫醇性硫,设计硫 含量小于 5×10⁻⁶,实测值为未检出 S、N 等杂原子化 合物^[8]。

3) 航煤产品。航煤产品中硫元素以硫醇性硫 形态存在,设计硫含量小于 3×10⁻⁶,实测值为未检 出 S、N 等杂原子化合物。

4) 液化气产品。液化气产品中硫元素主要以 H_2S 形态存在,存在少量硫醇性硫, H_2S 含量控制指 标为不大于 10×10⁻⁶,实测 H_2S 含量 1.09×10⁻⁶。

1.4 三废中硫元素的形态及含量

1.4.1 煤液化残渣中硫元素的形态及含量

煤液化残渣主要由馏分较重的油、沥青和废催 化剂、煤中灰分、未反应煤粉等固体物料组成。煤液 化残渣性质分析见表 3。残渣中硫含量为 1%~3%, 除来自煤中的硫之外大部分来自外加助催化剂的 硫 因此大部分以单质硫形态存在,还有少量的黄铁 矿硫^[9-10]。

表3 煤液化残渣性质

·C	Table 3	Qualities of	coal lique	efaction dro	egs %
$A_{\rm ar}$	$w(C_{ar})$	$w(H_{ar})$	$w(N_{ar})$	w($S_{t,ar}$)	$w(O_{ar})$

0.86

1.82

0.78

1.4.2 气化灰渣中硫元素的形态及含量

4.54

气化灰渣主要是 SiO₂、Al₂O₃,硫元素主要以硫酸盐形态存在,含量占气化灰渣的0.49%。气化灰渣成分分析见表4。

表 4 气化灰渣成分分析

Table 4 Content analysis of gasification ashes	
--	--

16.68

74 72

成分	SiO_2	Al_2O_3	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	CaO	SO_3	其他氧化物
质量分数/%	46.20	28.62	6. 28	15.98	0.49	2. 43

1.4.3 硫磺回收尾气中硫元素的形态及含量

硫磺回收尾气排放的硫化物为 SO₂ SO₂浓度设 计要求小于 800×10⁻⁶ 实测值为 451×10^{-6} 。

1.4.4 燃料气中硫元素的形态及含量

燃料气中主要的硫化物为 H_2S , H_2S 含量设计 值为不大于 20×10⁻⁶ ,实测值为 4. 57×10⁻⁶ 。

1.4.5 污水中硫元素的形态及含量

污水处理中硫元素主要以 $(NH_4)_2S$ 形态存在,

硫化物含量设计值为不大于 200 mg/L,实测值为 156.57 mg/L。

2 硫元素在煤直接液化工艺中的作用

2.1 煤液化反应注硫的作用及方式

煤液化反应铁系催化剂的前驱体在煤液化过程 中需要先与 S 反应,生成磁黄铁矿相 Fe_{1-x}S 才能产 生催化活性。神华煤直接液化技术选用的煤液化反 应助催化剂为液硫,铁系催化剂与液硫反应后形态 转化为 Fe_7S_8 ,在催化剂的作用下发生加氢裂化反 应;同时维持一定 H_2S 分压,防止细颗粒聚合。由 于实际操作中高压注硫泵在苛刻的操作条件下经常 出现故障,在原高压注硫设计的基础上通过改造,增 加低压注硫方式确保注硫环节稳定运行。

2.2 加氢稳定装置注硫的作用

与其他加氢处理装置一样,加氢稳定装置也使 用氧化态加氢催化剂,在装置开工初期和在线补充 新鲜催化剂时将其还原、硫化,使之成为有加氢活性 的催化剂。另外,装置正常运行中由于煤液化油的 硫含量较低,硫化态金属上的硫容易流失,被氢气还 原为金属而降低活性,因此加入液硫来维持循环氢 系统的 H₂S 含量^[11]。

2.3 加氢改质装置注硫的作用

加氢改质装置注硫有两方面的作用,即催化剂 预硫化和保持反应系统循环氢的 H₂S 浓度。

加氢改质催化剂预硫化是由于催化剂的活性金 属组分在使用前为氧化态,需要进行预硫化和注氨 钝化处理。

保持反应系统循环氢的 H₂S 浓度是由于煤液 化油经加氢稳定处理后残留的硫含量较低,因此需 要向反应进料中加入定量的含硫化合物(如 CS₂ 或 二甲基二硫等),以使反应系统循环氢的 H₂S 含量 保持在 0.05% 左右。其作用一是使催化剂上的活 性金属保持硫化态,具有加氢活性; 二是 H₂S 的存 在也会促进催化剂上芳烃加氢的反应速率; 另外注 硫也可以有效地降低循环氢系统的 NH₃浓度,提高 催化剂的活性^[11]。

2.4 硫化剂的种类与添加量

神华煤直接液化工艺中煤液化和加氢稳定采用 液硫作为硫化剂,加氢改质采用 CS₂ 作为硫化剂。 硫化剂用量主要依据循环氢中 H₂S 的浓度,其主要 参数及用量见表 5。

	表 5 硫化剂的	王要参致
Table 5	Key parameters of	of sulfurizing reagen

硫化剂	设计流量/ (kg • h⁻¹)	密度 / (kg•m ⁻³)	熔点/ ℃	沸点/ ℃
液硫(煤液化)	2 455	1 726	119.0	444.6
液硫(加氢稳定)	395	1 726	119.0	444.6
CS ₂ (加氢改质)	160	1 262	-108.6	46.3

3 煤清洁转化过程及反应机理

神华煤直接液化工艺在煤炭清洁转化利用的过 程中主要从煤制氢和煤液化2条路径对煤中硫元素 进行了转化、减量、脱除,从而实现煤炭清洁利用。 现就神华鄂尔多斯煤直接液化项目的2条减硫、降 硫路径的机理和转化过程进行分析。

3.1 煤制氢清洁转化过程及反应机理

煤制氢减硫、降硫的过程及机理:煤中硫元素经 气化反应、变换反应、净化脱硫脱碳一系列化学和物 理变化,大部分硫元素以酸性气的形态集中进入气 体脱硫和硫磺回收装置进行硫回收,未发生转化的 硫元素进入灰渣集中处理。

3.1.1 煤气化

煤气化将煤粉中硫元素经气化反应转化为 COS、CS₂、H₂S、其余未转化硫元素进入灰渣和污水 中^[6]。变换原料气中 H₂S+COS+CS₂体积分数为 0.1% ,COS、CS₂等有机硫在变换催化剂的作用下水 解为 H₂S ,反应式如下

$$\cos + H_2 O \longrightarrow H_2 S + CO_2$$
(1)

 $COS + H_2 \longrightarrow H_2S + CO$ (2)

3.1.2 变换气净化

变换后的合成气中含有 $H_2S_{S}COS_{S}CO_2$ 等酸性 气体。通常采用胺液法、NHD(聚乙二醇二甲醚)法 和低温甲醇洗等技术进行脱硫、脱碳^[12-13]。神华鄂 尔多斯煤直接液化项目采用林德经典 5 塔低温甲醇 洗工艺,以甲醇为吸收溶剂,利用低温甲醇对 H_2S_{S} CO_2 等酸性气溶解吸收特点及 H_2S 与 CO_2 在甲醇中 的溶解度不同特点,脱除合成气中酸性气体,通过闪 蒸、浓缩、汽提、再生等方式获取高浓度 H_2S 酸性 气,有利于后续硫磺回收操作。洗涤后的净化气 H_2S+COS 体积分数<0.1×10⁻⁶。

3.1.3 干气制氢

由气体脱硫装置净化后的干气中氢含量较高, 因此煤直接液化项目增加了干气制氢装置回收氢 气,保证煤液化装置的氢气供应量。为保证干气制 氢过程中转化炉镍催化剂床层的烃-蒸汽转化反应 正常进行,在流程配置上增加了干法脱硫流程,采用 铁锰加氢反应器后串联氧化锌脱硫槽。

铁锰系转化脱硫催化剂在 350~400 ℃高温下, 加入氢气发生以下反应

$$RSH + H_2 \longrightarrow H_2S + RH$$
 (3)

 $H_2S + MnO \longrightarrow MnS + H_2O$ (4)

$$H_2S + ZnO \longrightarrow ZnS + H_2O$$
 (5)

 $C_2H_5SH + ZnO \longrightarrow ZnS + C_2H_4 + H_2O$ (6)

反应后硫含量由 249×10⁻⁶下降到 0.1×10⁻⁶。

3.2 煤液化清洁转化过程及反应机理

煤液化原料煤中硫元素在直接液化工艺中分别 经过煤液化装置加氢裂化反应、加氢稳定装置加氢 精制反应、加氢改质装置加氢精制反应三级加氢,各 形态硫元素大部分转化为 H₂S 被脱除,未转化的硫 和助催化剂液硫进入煤液化残渣中集中处理,极微 量的硫进入柴油、石脑油、液化气等产品中。

3.2.1 煤液化装置脱硫

煤直接液化主要反应为加氢裂化反应,反应过 程中油煤浆在450 ℃、18.2 MPa、催化剂、氢气存在 的条件下发生二级加氢裂化反应,煤中大部分硫醇、 硫醚等脂肪族硫化物和部分含硫杂环化合物中的 硫,经过热解反应和加氢反应被脱除^[14]。

$$\langle \bigcirc SH + H_2 \longrightarrow \langle \bigcirc H_2 S \rangle$$

$$R \longrightarrow R' + 2H_2 \longrightarrow H_2S + RH + R'H' (8)$$
$$(9)$$

3.2.2 加氢稳定装置脱硫

煤液化反应后产出的液化粗油含硫量较高,在 加氢稳定单元反应温度 350 °C、反应压力 13.8 MPa、精制催化剂和氢气条件下发生加氢脱硫 反应,硫醇、硫醚、二硫化物加氢转化为烃和 H₂ S^[15]。环状含硫物在加氢脱硫时环中双键先加氢饱 和 再断环脱硫,硫原子脱除率可达 97.2%。硫醇、 硫醚、噻吩同系物的反应与煤液化相同,二硫化物脱 除反应如下

$$R \longrightarrow S \longrightarrow R' + 3H_2 \longrightarrow RH + R'H + 2H_2S$$
(10)

3.2.3 加氢改质装置脱硫

加氢改质装置设置 2 台反应器 ,分别为加氢精制和加氢改质反应器。脱硫反应是在加氢精制反应器中发生 ,主要目的是脱除最难脱除的二苯并噻吩中的硫原子。反应机理与加氢稳定单元相同 ,反应 温度 360 ℃ ,反应压力 18.2 MPa ,催化剂 RNC-1 ,氢 分压 12.5 MPa ,空速 1.10 h⁻¹。

3.2.4 煤直接液化过程中硫含量变化

煤直接液化转变为油品的过程中,经过3次加

氢反应 硫分逐步减少 ,最终产出的柴油、航煤、石脑 油产品中几乎不含有硫元素 ,完全满足国 V 标准车 用汽油、柴油标准。煤直接液化过程各环节主物料 中硫含量见表 6。

表6 煤直接液化过程各环节主物料中硫含量

Table 6 Sulfur contents of main contents in each

link of direct coal liquefaction process

物料	设计硫含量	实测硫含量
液化精煤	0.42%	0.32%
煤液化油	0.3%~0.7%	306×10^{-6}
加氢改质原料油	<18×10 ⁻⁶	16. 6×10^{-6}
柴油产品	$<5 \times 10^{-6}$	未检出
航煤产品	<3×10 ⁻⁶	未检出
轻石脑油产品	<0.5×10 ⁻⁶	未检出
重石脑油产品	<1×10 ⁻⁶	未检出
液化气产品	<30×10 ⁻⁶	1.09 mg/m^3

煤直接液化工艺硫平衡分析

4.1 硫平衡基础条件

2015 年装置检修后在煤液化装置高负荷下通 过 DCS 数据采集和现场采样分析化验,对煤直接液 化项目参与反应的各物料中硫元素含量进行了检 测,并对全工艺流程硫平衡进行了分析。主要装置 运行负荷如下:煤液化装置进液化精煤(水分小于 4%)量为 200 t/h,负荷为 90.49%;加氢稳定装置全 部接收煤液化产油,另加工燃料油 35.20 t/h,负荷 为 95.08%;加氢改质装置全部接收 104 单元改质 料,负荷为 80.56%;轻烃回收装置负荷为 117%。

- 4.2 煤直接液化项目硫平衡
- 4.2.1 硫元素组成比例

硫元素来源组成比例见表 7。

表 7 硫元素来源组成比例

流量/(t・h⁻¹)	比例/%
2. 505	57.92
0. 413	9.55
0. 135	3.12
0. 617	14. 27
0. 119	2.75
0. 084	1.94
0. 452	10. 45
4. 325	100.00
	流量/(t・h ⁻¹) 2.505 0.413 0.135 0.617 0.119 0.084 0.452 4.325

由表 7 可知,经采样分析、测算后,硫元素主要 来自反应注硫和原料煤中含硫,其中反应注硫占总 硫的 70.59%,原料煤中含硫占总比例27.47%。

硫元素去向组成比例见表 8。由表 8 可知,硫 元素主要去向为液化油渣和硫磺回收硫,其中液化 油 渣 占 比 59.77%,硫 磺 回 收 硫 中 含 硫 占 比 38.43%,主要产品柴油、石脑油、液化气中硫含量合 计占比 0.001 33%。

表 8 硫元素去向组成比例 Table 8 Whereabouts composition of sulfur

出方物料	流量/(t • h ⁻¹)	比例/%
液化油渣	2. 585	59.77
气化灰渣	0.053	1.23
燃料气燃烧排放	0. 15×10 ⁻³	0.003 4
液化气产品	6. 3×10 ⁻⁶	0.000 15
石脑油产品	0. 17×10 ⁻⁴	0.000 39
柴油产品	0. 34×10^{-4}	0.00079
污水处理场	0.006 4	0.15
硫磺回收硫	1.662	38.43
硫磺回收尾气排放	0.002 7	0.062
酸性气放空损失	0.016	0.37
合计	4. 325	100

 4.2.2 神华鄂尔多斯煤直接液化项目硫平衡分析 神华鄂尔多斯煤直接液化项目中硫元素主要来 源于反应注硫和原料煤中含硫,两项合计占总硫的 98.06% 剩余硫元素来自加工燃料油带入的硫元 素,比例仅为 1.94%。硫元素经过煤气化反应、煤 液化反应、加氢稳定反应、加氢改质反应后 59.77% 硫元素进入液化油渣,1.23%进入气化灰渣中,只有 微量的硫元素进入柴油、石脑油、液化气产品中;剩 余硫元素随酸性气和酸性水进入气体脱硫、污水汽 提、硫磺回收等环保装置,进行集中回收,最终以硫 磺形态回收 38.43%的硫元素。

5 结 论

1) 煤直接液化技术可将原料煤中的硫元素经 过煤气化和煤液化加氢反应大幅脱除,生产出清洁 油品,是当前煤炭清洁转换利用的有效途径。

2) 生产的油品硫含量低,完全达到国 V 标准, 可以大幅降低汽车尾气的 SO₂排放,有效缓减排放 引起的雾霾天气等环境问题。

3) 煤直接液化工艺将注入的硫与煤中的部分

硫转化成硫磺回收循环利用,同时将无法回收利用 的硫元素集中转化到煤液化油渣和灰渣中集中处 理,防止污染环境。

参考文献(References):

- [1] 刘 强 李 平.大范围严重雾霾现象的成因分析与对策建议
 [J].中国社会科学院研究生院学报 2014(5):63-68.
 Liu Qiang Li Ping. An analysis on the causes of large-scale smog in China and policy recommendation [J]. Journal of Graduate School of Chinese Academy of Social Sciences 2014(5):63-68.
- [2] 王文峰 秦 勇 宋党育.煤中有害元素的洗选洁净趋势[J].燃 料化学学报 2003 ,30(2):147-150.

Wang Wenfeng Qin Yong Song Dangyu.Cleaning potential of hazardous elements during coal washing [J].Journal of Fuel Chemistry and Technology 2003 30(2):147-150.

[3] 洪 伟 涨 衡 涨春田 筹.煤品质变化及有害元素迁移的研 究进展[J].洁净煤技术 2016 22(5):108-112.

Hong Wei ,Zhang Heng ,Zhang Chuntian ,*et al*. Research progress on coal quality changes and migration of harmful elements [J]. Clean Coal Technology ,2016 ,22(5) : 108–112.

- 4] 夏筱红.煤中有害元素直接液化迁移行为及其环境效应[D].
 徐州:中国矿业大学 2009:133-139.
- [5] 唐跃刚 , 贺 鑫 程爱国 , 等. 中国煤中硫含量分布特征及其沉 积控制[J]. 煤炭学报 2015 40(9): 1977-1988.

Tang Yuegang ,He Xin ,Chen Aiguo ,et al. Occurrence and sedimentary control of sulfur in coals of China [J]. Journal of China Coal Society 2015 40(9): 1977–1988.

- [6] 胡 军,郑宝山,王滨滨,等.中国煤中有机硫的分布及其成因
 [J].煤田地质与勘探 2005 33(5):15-18.
 Hu Jun Zheng Baoshan, Wang Binbin *et al.*Distribution and forming cause of organic sulfur in coals of China [J]. Coal Geology & Exploration 2005 33(5):15-18.
- [7] 罗陨飞 李文华 差 英,等.中国煤中硫的分布特征研究[J].
 煤炭转化 2005 28(3):14-18.
 Luo Yunfei, Li Wenhua, Jiang Ying, *et al.* Distribution of sulfur in coals of China [J]. Coal Conversion 2005 28(3):14-18.
- [8] 李海军.煤直接液化柴油产品特性研究[J].化工时刊 2015 29 (12):37-41.

Li Haijun. Study on the characteristics of coal direct liquefaction diesel products [J]. Chemical Industry Times ,2015 ,29(12): 37-41.

- [9] 楚希杰 李 文,白宗庆 等.神华煤直接液化残渣热解特性研究[J].燃料化学学报 2009,37(4):393-397.
 Chu Xijie, Li Wen, Bai Zongqing, et al. Pyrolysis characteristics of Shenhua direct liquefaction residue [J].Journal of Fuel Chemistry and Technology 2009,37(4):393-397.
- [10] 陈洪博 李文华 差 英 等.神东煤液化残渣显微组分的特征 与分类研究[J].燃料化学学报 2006 34(5):513-518.

(下转第51页)

验研究[J].燃料化学学报 2000 28(1):44-48.

Ma Liqiang ,Lu Jiling ,Yue Guangxi.Experimental study on primary fragmentation of coals in fluidized bed[J].Journal of Fuel Chemistry and Technology 2000 28(1):44-48.

[8] 吴正舜,刘 欣,吴创之,等.煤在燃烧过程中的破碎[J].电站 系统工程,2003,19(2):4-6.

Wu Zhengshun ,Liu Xin ,Wu Chuangzhi *et al*. The fragment of coal during combustion [J]. Power System Engineering ,2003 ,19(2): 4–6.

- [9] Chirone R ,Massimilla L Salatino P.Comminution of carbons in fluidized bed combustion [J]. Progress of Energy Combustion Science ,1991 ,17(4) : 297-326.
- [10] Chirone R ,Massimilla L.The application of weibull theory to primary fragmentation of coal during devolatilization [J]. Power Technology ,1989 57(3): 197-212.
- [11] Marban G ,Pis J J ,Fuertes A B. Characterizing fuels for atmospheric fluidized bed combustion [J]. Combustion and Flame , 1995 ,103(1/2):41-58.
- [12] Fuertes A B Marban G.Modelling gasification reactions including the percolation phenomenon [J]. Chemical Engineering Science, 1994 A9(94): 3813-3821.
- [13] Liu G ,Wu H ,Gupta R P ,et al. Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion [J].Fuel 2000 ,79(6) : 627-633.
- [14] Beer J M , Kim J S , Kim J J. Comminution characteristics of Korean anthracite in a CFB reactor [J]. Fuel 2003 82(11):1349-1357.
- [15] 李爱民 池 涌,严建华,等.大颗粒碳在流化床中燃烧的热应 力破碎理论[J].煤炭学报,1998 23(2):208-211.
 Li Aimin ,Chi Yong ,Yan Jianhua *et al*, A thermal stress breakage theory for large carbon particles during combustion in fluidized bed[J].Journal of China Coal Society, 1998 23(2):208-211.
- [16] Zhang W N Johnsson F ,Leckner B.Fluid-dynamic boundary layers in CFB boilers [J]. Chemical Engineering Science ,1995 ,50 (2):201-210.

(上接第45页)

Chen Hongbo ,Li Wenhua ,Jiang Ying ,*et al*. Microscopic characteristics and classifaction of Shendong coal hydroliquefaction residues [J]. Journal of Fuel Chemistry and Technology ,2006 ,34 (5):513-518.

- [11] 吴秀章,朱豫飞,石玉林,等.加氢精制催化剂用于煤直接液化 油品加氢稳定的研究[J].神华科技 2009 7(6):59-63.
 Wu Xiuzhang Zhu Yufei Shi Yunlin *et al*.Hydrotreatment of direct coal liquefaction products with a hydrofining catalyst [J].
 Shenhua Science and Technology 2009 7(6):59-63.
- [12] 许仁春.Shell 粉煤气化高水气比 CO 耐硫变换工艺流程优化
 [J].中氮肥 2011(5):1-4.
 Xu Renchun.Optimization of high water/gas ratio CO shift process flow [J].M-Sized Nitrogenous Fertilizer Progress 2011(5):1-4.
- [13] 赵鹏飞 李水弟 ,王立志.低温甲醇洗技术及其在煤化工中的

- [17] 姚 海.流化床中煤颗粒热膨胀破碎特性的实验研究与定量 评价[D].武汉:华中科技大学 2006.
- [18] Lee S H ,Kim S D ,Lee D H.Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor [J]. Fuel 2002 \$1(13):1633-1639.
- [19] 黄建辉 徐明厚,于敦喜,等.煤燃烧过程中一次破碎的影响因素分析[J].工程热物理学报 2005 26(3):519-522.
 Huang Jianhui,Xu Minghou,Yu Dunxi,et al.Significant factors affecting the primary fragmentation of coal particles during coal combustion[J].Journal of Engineering Thermophysics 2005, 26(3):519-522.
- [20] 于敦喜 徐明厚,黄建辉,等.煤焦破碎成灰模型研究[J].工程 热物理学报 2005 26(6):1041-1044.

Yu Dunxi , Xu Minghou , Huang Jianhui , *et al*. A model study on char fragmentation and ash formation [J]. Journal of Engineering Thermophysics 2005 , 26(6) : 1041–1044.

[21] 步学朋 陈家仁 彭万旺 高煤阶无烟煤热爆机理研究[J].煤 炭学报 2000 25(S1):209-212.

Bu Xuepeng, Chen Jiaren, Peng Wanwang. Study on thermal cracking of high rank anthracite [J]. Journal of China Coal Society 2000 25(S1): 209-212.

- [22] 何宏舟.CFB 锅炉洁净燃烧福建无烟煤的理论与试验研究 [D].杭州:浙江大学 2005.
- [23] 杨 杰·燃煤一次破碎特性的实验研究[D].太原:太原理工 大学 2012.
- [24] Chen W Y ,Nagarajan G Zhang Z P.Stochastic modeling of devolatilization-induced coal fragmentation during fluidized-bed combustion [J].Industrial & Engineering Chemistry Research ,1994 , 33(1):137-145.
- [25] Cui Y B ,Stuvbington J F. A mathematical model of in bed char combustion of Australian coals in PFBC [J].Fuel 2001 80 (14): 2049-2056.

应用[J].化工进展 2012 31(11):2442-2448.

Zhao Pengfei ,Li Shuidi ,Wang Lizhi. Rectisol technology and its application in coal chemical industry [J]. Chemical Industry and Engineering Progree 2012 ,31(11): 2442–2448.

- [14] Shu Geping Zhang Yuzhuo.Research on maceral characteristics of Shenhua coal and efficient and directional direct coal liquefaction technology [J].International Journal of Coal Science and Technology 2014 ,1(1):46-55.
- [15] 吴秀章 石玉林,马 辉.煤炭直接液化油品加氢稳定和加氢 改质的试验研究[J].石油炼制与化工 2009 40(5):1-5.
 Wu Xiuzhang ,Shi Yunlin ,Ma Hui. Study on the hydrogenation and hydro-upgrading of oil product from direct coal liquefaction process[J]. Petroluem Processing and Petrochemicals ,2009 ,40 (5):1-5.